دورية أكاديمية

Nanoemulsion Improves the Neuroprotective Effects of Curcumin in an Experimental Model of Parkinson's Disease.

التفاصيل البيبلوغرافية
العنوان: Nanoemulsion Improves the Neuroprotective Effects of Curcumin in an Experimental Model of Parkinson's Disease.
المؤلفون: Ramires Júnior OV; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil., Alves BDS; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil., Barros PAB; Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil., Rodrigues JL; Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil., Ferreira SP; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil., Monteiro LKS; Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil., Araújo GMS; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil., Fernandes SS; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil., Vaz GR; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil., Dora CL; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil.; Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil., Hort MA; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Campus Saúde, Universidade Federal do Rio Grande, Rua Visconde de Paranaguá, 102, Centro, Rio Grande, RS, 96203-900, Brazil. marianaappel@gmail.com.; Instituto de Ciências Biológicas, Campus Carreiros, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-900, Brazil. marianaappel@gmail.com.
المصدر: Neurotoxicity research [Neurotox Res] 2021 Jun; Vol. 39 (3), pp. 787-799. Date of Electronic Publication: 2021 Apr 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 100929017 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-3524 (Electronic) Linking ISSN: 10298428 NLM ISO Abbreviation: Neurotox Res Subsets: MEDLINE
أسماء مطبوعة: Publication: <2009-> : New York : Springer
Original Publication: [Amsterdam?] : Harwood Academic Publishers,
مواضيع طبية MeSH: Curcumin/*administration & dosage , Emulsions/*administration & dosage , Nanoparticles/*administration & dosage , Neuroprotective Agents/*administration & dosage , Parkinsonian Disorders/*prevention & control , Rotenone/*toxicity, Animals ; Anti-Inflammatory Agents, Non-Steroidal/administration & dosage ; Anti-Inflammatory Agents, Non-Steroidal/chemistry ; Curcumin/chemistry ; Emulsions/chemistry ; Male ; Mice ; Nanoparticles/chemistry ; Neuroprotective Agents/chemistry ; Parkinsonian Disorders/chemically induced ; Parkinsonian Disorders/metabolism
مستخلص: Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction. Recent studies have shown that curcumin (CUR) has neuroprotective effects in PD experimental models. However, its efficacy is limited due to low water solubility, bioavailability, and access to the central nervous system. In this study, we compared the effects of new curcumin-loaded nanoemulsions (NC) and free CUR in an experimental model of PD. Adult Swiss mice received NC or CUR (25 and 50 mg/kg) or vehicle orally for 30 days. Starting on the eighth day, they were administered rotenone (1 mg/kg) intraperitoneally until the 30th day. At the end of the treatment, motor assessment was evaluated by open field, pole test, and beam walking tests. Oxidative stress markers and mitochondrial complex I activity were measured in the brain tissue. Both NC and CUR treatment significantly improved motor impairment, reduced lipoperoxidation, modified antioxidant defenses, and prevented inhibition of complex I. However, NC was more effective in preventing motor impairment and inhibition of complex I when compared to CUR in the free form. In conclusion, our results suggest that NC effectively enhances the neuroprotective potential of CUR and is a promising nanomedical application for PD.
References: Abbaoui A, Chatoui H, El Hiba O, Gamrani H (2017) Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: a possible link with Parkinson’s disease. Neurosci Lett 660:103–108. (PMID: 28919537)
Aebi H, Wyss SR, Scherz B, Skavril F (1974) Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem 48:137–145. (PMID: 4141308)
Bagheri H, Ghasemi F, Barreto GE et al (2020) Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors 46:5–20. https://doi.org/10.1002/biof.1566. (PMID: 10.1002/biof.156631580521)
Betzer O, Shilo M, Opochinsky R et al (2017) The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study. Nanomedicine 12:1533–1546. (PMID: 28621578)
Bollimpelli VS, Kumar P, Kumari S, Kondapi AK (2016) Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 95:37–45. (PMID: 26826319)
Cannon JR, Tapias V, Na HM et al (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290. (PMID: 193850592757935)
Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. (PMID: 3003504)
Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316. (PMID: 8645009)
Chakraborty S, Karmenyan A, Tsai J-W, Chiou A (2017) Inhibitory effects of curcumin and cyclocurcumin in 1-methyl-4-phenylpyridinium (MPP+) induced neurotoxicity in differentiated PC12 cells. Sci Rep 7:16977. (PMID: 292090885717177)
Charvin D, Medori R, Hauser RA, Rascol O (2018) Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov 17:804–822. (PMID: 30262889)
Colle D, Santos DB, Naime AA et al (2019) Early postnatal exposure to paraquat and maneb in mice increases nigrostriatal dopaminergic susceptibility to a re-challenge with the same pesticides at adulthood: implications for Parkinson’s disease. Neurotox Res in press:.
Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease. JAMA 311:1670. (PMID: 24756517)
Darbinyan LV, Hambardzumyan LE, Simonyan KV et al (2017) Protective effects of curcumin against rotenone-induced rat model of Parkinson’s disease: in vivo electrophysiological and behavioral study. Metab Brain Dis 32:1791–1803. (PMID: 28695411)
Del Prado-Audelo M, Caballero-Florán I, Meza-Toledo J et al (2019) Formulations of curcumin nanoparticles for brain diseases. Biomolecules 9:56. (PMID: 6406762)
Đorđević SM, Cekić ND, Savić MM et al (2015) Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: design, characterization and in vivo pharmacokinetic evaluation. Int J Pharm 493:40–54. https://doi.org/10.1016/j.ijpharm.2015.07.007. (PMID: 10.1016/j.ijpharm.2015.07.00726209070)
El-Gamal M, Salama M, Collins-Praino LE et al (2021) Neurotoxin-induced rodent models of Parkinson’s disease: benefits and drawbacks. Neurotox Res. https://doi.org/10.1007/s12640-021-00356-8. (PMID: 10.1007/s12640-021-00356-833765237)
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. (PMID: 13650640)
Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46. (PMID: 14739060)
Fan X, Zhang C, Liu D et al (2013) The clinical applications of curcumin: current state and the future. Curr Pharm Des 19:2011–2031. (PMID: 23116310)
Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. (PMID: 11089981)
Franco-Iborra S, Vila M, Perier C (2016) The Parkinson disease mitochondrial hypothesis Neurosci 22:266–277.
Ganesan P, Ko H-M, Kim I-S, Choi D-K (2015) Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson´s disease models. Int J Nanomedicine 6757.
Ganta S, Deshpande D, Korde A, Amiji M (2010) A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol 27:260–273. (PMID: 20929336)
Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310:213–219. (PMID: 16426779)
Hädrich G, Vaz GR, Maidana M et al (2016) Anti-inflammatory effect and toxicology analysis of oral delivery quercetin nanosized emulsion in rats. Pharm Res 33:983–993. (PMID: 26687116)
Heinz S, Freyberger A, Lawrenz B et al (2017) Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci Rep 7:45465. (PMID: 283748035379642)
Hort MA, Alves B da S, Ramires Júnior OV, et al (2019) In vivo toxicity evaluation of nanoemulsions for drug delivery. Drug Chem Toxicol 1–10.
Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376. (PMID: 18344392)
Kakkar V, Muppu SK, Chopra K, Kaur IP (2013) Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 85:339–345. (PMID: 23454202)
Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127:97–109. (PMID: 18313785)
Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046. (PMID: 10.1146/annurev.pharmtox.46.120604.14104616968214)
Kundu P, Das M, Tripathy K, Sahoo SK (2016) Delivery of dual drug loaded lipid based nanoparticles across the blood-brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem Neurosci 7:1658–1670. (PMID: 27642670)
Lee W-H, Loo C-Y, Bebawy M et al (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378. (PMID: 243815283744901)
Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. (PMID: 14907713)
Marques MS, Cordeiro MF, Marinho MAG et al (2020) Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res 1746:147007. https://doi.org/10.1016/j.brainres.2020.147007. (PMID: 10.1016/j.brainres.2020.14700732645380)
Mathew A, Fukuda T, Nagaoka Y et al (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS ONE 7:e32616. (PMID: 224036813293842)
Molina Jimenez M, Sanchez Reus M, Cascales M et al (2005) Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine. Toxicol Appl Pharmacol 209:214–225. (PMID: 15904944)
Muralidhara GK (2013) Neuroprotective effects of tomato seed extract against rotenone-induced oxidative impairments and neurotoxicity in mice. Toxicol Lett 221:S237.
Mythri BR, Srinivas Bharath M (2012) Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 18:91–99. (PMID: 22211691)
Mythri RB, Harish G, Dubey SK et al (2011) Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson’s disease. Mol Cell Biochem 347:135–143. (PMID: 20972609)
Mythri RB, Jagatha B, Pradhan N et al (2006) Mitochondrial Complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 061221112325012.
Niedzielska E, Smaga I, Gawlik M et al (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53:4094–4125. (PMID: 26198567)
Oakes KD, Van Der Kraak GJ (2003) Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63:447–463. (PMID: 12758008)
Park G, Park Y-J, Yang HO, Oh MS (2013) Ropinirole protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice via anti-apoptotic mechanism. Pharmacol Biochem Behav 104:163–168. (PMID: 23369986)
Pistollato F, Canovas-Jorda D, Zagoura D, Bal-Price A (2017) Nrf2 pathway activation upon rotenone treatment in human iPSC-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem Int 108:457–471. (PMID: 28627367)
Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease Nat Rev Dis Prim 3:17013. https://doi.org/10.1038/nrdp.2017.13. (PMID: 10.1038/nrdp.2017.1328332488)
Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2014) Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv 32:1053–1064. (PMID: 24793420)
Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Mc R-T (2016) Curcumin and health. Molecules 21:264. (PMID: 269270416273481)
Qin S, Huang L, Gong J et al (2017) Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr J 16:68. (PMID: 290209715637251)
Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96–99. (PMID: 18408903)
Sánchez-Reus MI, Gómez del Rio MA, Iglesias I et al (2007) Standardized Hypericum perforatum reduces oxidative stress and increases gene expression of antioxidant enzymes on rotenone-exposed rats. Neuropharmacology 52:606–616. (PMID: 17070561)
Schapira AHV, Cooper JM, Dexter D et al (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827. (PMID: 2154550)
Shinomol GK, Mythri RB, Srinivas Bharath MM, Muralidhara, (2012) Bacopa monnieri extract offsets rotenone-induced cytotoxicity in dopaminergic cells and oxidative impairments in mice brain. Cell Mol Neurobiol 32:455–465. (PMID: 22160863)
Sood S, Jain K, Gowthamarajan K (2014) Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surfaces B Biointerfaces 113:330–337. (PMID: 24121076)
Sugasini D, Lokesh BR (2017) Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats. Prostaglandins, Leukot Essent Fat Acids 119:45–52.
Tatem KS, Quinn JL, Phadke A et al (2014) Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J Vis Exp 51785.
Tsai Y-M, Chien C-F, Lin L-C, Tsai T-H (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharm 416:331–338. (PMID: 21729743)
Vargas C, Wajner M, Sirtori L et al (2004) Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta - Mol Basis Dis 1688:26–32.
Vaz GR, Hädrich G, Bidone J et al (2017) Development of nasal lipid nanocarriers containing curcumin for brain targeting. J Alzheimer’s Dis 59:961–974.
Velmurugan B, Rathinasamy B, Lohanathan B et al (2018) Neuroprotective role of phytochemicals. Molecules 23:2485. https://doi.org/10.3390/molecules23102485. (PMID: 10.3390/molecules231024856222499)
Vyas TK, Shahiwala A, Amiji MM (2008) Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 347:93–101. https://doi.org/10.1016/j.ijpharm.2007.06.016. (PMID: 10.1016/j.ijpharm.2007.06.01617651927)
Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333. (PMID: 7329310)
Yao M, Xiao H, McClements DJ (2014) Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles. Annu Rev Food Sci Technol 5:53–81. (PMID: 24328432)
Zagoura D, Canovas-Jorda D, Pistollato F et al (2017) Evaluation of the rotenone-induced activation of the Nrf2 pathway in a neuronal model derived from human induced pluripotent stem cells. Neurochem Int 106:62–73. (PMID: 27615060)
Zbarsky V, Datla KP, Parkar S et al (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125. (PMID: 16298737)
معلومات مُعتمدة: 449650/2014-6 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Curcumin; Motor impairment; Nanoparticles; Oxidative stress; Parkinson’s disease
المشرفين على المادة: 0 (Anti-Inflammatory Agents, Non-Steroidal)
0 (Emulsions)
0 (Neuroprotective Agents)
03L9OT429T (Rotenone)
IT942ZTH98 (Curcumin)
تواريخ الأحداث: Date Created: 20210416 Date Completed: 20211129 Latest Revision: 20221021
رمز التحديث: 20221213
DOI: 10.1007/s12640-021-00362-w
PMID: 33860897
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-3524
DOI:10.1007/s12640-021-00362-w