دورية أكاديمية

Method optimization of oxylipin hydrolysis in nonprocessed bovine milk indicates that the majority of oxylipins are esterified.

التفاصيل البيبلوغرافية
العنوان: Method optimization of oxylipin hydrolysis in nonprocessed bovine milk indicates that the majority of oxylipins are esterified.
المؤلفون: Teixeira BF; Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.; ESALQ Food, College of Agriculture 'Luiz de Queiroz,', University of São Paulo, Piracicaba, São Paulo, Brazil., Dias FFG; Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA., Vieira TMFS; ESALQ Food, College of Agriculture 'Luiz de Queiroz,', University of São Paulo, Piracicaba, São Paulo, Brazil., Leite Nobrega de Moura Bell JM; Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.; Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, California, USA., Taha AY; Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, California, USA.
المصدر: Journal of food science [J Food Sci] 2021 May; Vol. 86 (5), pp. 1791-1801. Date of Electronic Publication: 2021 Apr 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the Institute of Food Technologists Country of Publication: United States NLM ID: 0014052 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-3841 (Electronic) Linking ISSN: 00221147 NLM ISO Abbreviation: J Food Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists
مواضيع طبية MeSH: Milk/*chemistry , Oxylipins/*chemistry, Animals ; Cattle ; Esterification ; Fatty Acids, Unsaturated/chemistry ; Humans ; Hydrolysis ; Linoleic Acid/chemistry ; Oxidation-Reduction ; Oxylipins/analysis ; Oxylipins/isolation & purification ; Sodium Hydroxide/chemistry
مستخلص: The oxidation of polyunsaturated fatty acids produces bioactive primary oxidation products known as oxylipins. In many biological matrices, the majority of oxylipins are bound (i.e. esterified), and a relatively small proportion (<10%) exists in the free form. The present study tested whether this extends to bovine milk following method evaluation of various extraction and base hydrolysis protocols for measuring bound oxylipins. Free (unbound) oxylipins were also measured. Folch extraction followed by sodium carbonate hydrolysis in the presence of methanol containing 0.1% of acetic acid and 0.1% of butylated hydroxytoluene resulted in greater oxylipin concentrations and better surrogate standard recoveries compared to other methods that did not involve Folch extraction or the addition of methanol with hydrolysis base. Sodium hydroxide was better than sodium carbonate in hydrolyzing bound oxylipins under the same conditions. Milk analysis of oxylipins with mass-spectrometry following Folch extraction and sodium hydroxide hydrolysis revealed that 95% of oxylipins in bovine milk were esterified. Most of the detected oxylipins were derived from linoleic acid, which accounted for 92 and 88% of oxylipins in the free and esterified pools, respectively. These results demonstrate that the majority of bovine milk oxylipins are bound, and that linoleic-acid derived metabolites are the most abundant oxylipin species in free and bound lipid pools. Additional studies are needed to understand the role of different oxylipin pools in both calf and human nutrition. PRACTICAL APPLICATION: A method involving Folch lipid extraction and sodium hydroxide hydrolysis was validated for esterified oxylipin measurements in bovine milk. Application of the method revealed that the majority (∼95%) of oxylipins in bovine milk were bound. Linoleic-acid derived oxylipins were the most abundant species in both bound and free milk fractions (88-92%). The results highlight the presence of a new pool of oxidized lipids in milk, potentially involved in modifying its sensory and nutritional properties.
(© 2021 Institute of Food Technologists®.)
References: Arnardottir, H., Orr, S. K., Dalli, J., & Serhan, C. N. (2016). Human milk proresolving mediators stimulate resolution of acute inflammation. Mucosal Immunology, 9(3), 757-766. https://doi.org/10.1038/mi.2015.99.
Dias, F. F. G., Augusto-Obara, T. R., Hennebelle, M., Chantieng, S., Ozturk, G., Taha, A. Y., Vieira, T. M. F. d. S., & Bell, J. M. L. N. d. M. (2020). Effects of industrial heat treatments on bovine milk oxylipins and conventional markers of lipid oxidation. Prostaglandins Leukotrienes and Essential Fatty Acids, 152, 102040. https://doi.org/10.1016/j.plefa.2019.102040.
Gagliostro, G. A., Antonacci, L. E., Daiana Pérez, C., Rossetti, L., & Carabajal, A. (2020). Improving concentration of healthy fatty acids in milk, cheese and yogurt by adding a blend of soybean and fish oils to the ration of confined dairy cows. Open Journal of Animal Sciences, 10, 182-202. https://doi.org/10.4236/ojas.2020.101010.
Gan, J., Zhang, Z., Kurudimov, K., German, J. B., & Taha, A. Y. (2020). Distribution of free and esterified oxylipins in cream, cell, and skim fractions of human milk. Lipids, 55, 661-670. https://doi.org/10.1002/lipd.12268.
Hennebelle, M., Otoki, Y., Yang, J., Hammock, B. D., Levitt, A. J., Taha, A. Y., & Swardfager, W. (2017). Altered soluble epoxide hydrolase-derived oxylipins in patients with seasonal major depression: An exploratory study. Psychiatry Research, 252, 94-101. https://doi.org/10.1016/J.PSYCHRES.2017.02.056.
Khiaosa-Ard, R., Klevenhusen, F., Soliva, C. R., Kreuzer, M., & Leiber, F. (2010). Transfer of linoleic and linolenic acid from feed to milk in cows fed isoenergetic diets differing in proportion and origin of concentrates and roughages. Journal of Dairy Research, 77(3), 331-336. https://doi.org/10.1017/S0022029910000257.
Kuhn, M. J., Mavangira, V., Gandy, J. C., Zhang, C., Jones, A. D., & Sordillo, L. M. (2017). Differences in the oxylipid profiles of bovine milk and plasma at different stages of lactation. Journal of Agricultural and Food Chemistry, 65(24), 4980-4988. https://doi.org/10.1021/acs.jafc.7b01602.
Kuhn, M. J., Putman, A. K., & Sordillo, L. M. (2020). Widespread basal cytochrome P450 expression in extrahepatic bovine tissues and isolated cells. Journal of Dairy Science, 103(1), 625-637. https://doi.org/10.3168/jds.2019-17071.
Lahvic, J. L., Ammerman, M., Li, P., Blair, M. C., Stillman, E. R., Fast, E. M., Robertson, A. L., Christodoulou, C., Perlin, J. R., Yang, S., Chiang, N., Norris, P. C., Daily, M. L., Redfield, S. E., Chan, I. T., Chatrizeh, M., Chatrizeh, M. E., Weis, O., Zhou, Y., …, Zon, L. I., et al. (2018). Specific oxylipins enhance vertebrate hematopoiesis via the receptor GPR132. Proceedings of the National Academy of Sciences of the United States of America, 115(37), 9252-9257. https://doi.org/10.1073/pnas.1806077115.
Ling, K., Henno, M., Jõudu, I., Püssa, T., Jaakson, H., Kass, M., Anton, D., & Ots, M. (2017). Selenium supplementation of diets of dairy cows to produce Se-enriched cheese. International Dairy Journal, 71, 76-81. https://doi.org/10.1016/J.IDAIRYJ.2017.03.004.
Mavangira, V., Gandy, J. C., Zhang, C., Ryman, V. E., Daniel Jones, A., & Sordillo, L. M. (2015). Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis. Journal of Dairy Science, 98(9), 6202-6215. https://doi.org/10.3168/JDS.2015-9570.
Muruz, H., & Çetinkaya, N. (2019). The effect of dairy cow feeding regime on functional milk production. International Advanced Researches and Engineering Journal, 03(1), 001-006.
Obinata, H., Hattori, T., Nakane, S., Tatei, K., & Izumi, T. (2005). Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. Journal of Biological Chemistry, 280(49), 40676-40683. https://doi.org/10.1074/jbc.M507787200.
Ostermann, A. I., Koch, E., Rund, K. M., Kutzner, L., Mainka, M., & Schebb, N. H. (2020). Targeting esterified oxylipins by LC-MS: Effect of sample preparation on oxylipin pattern. Prostaglandins and Other Lipid Mediators, 146, 106384. https://doi.org/10.1016/j.prostaglandins.2019.106384.
Otoki, Y., Metherel, A. H., Pedersen, T., Yang, J., Hammock, B. D., Bazinet, R. P., Newman, J. W., & Taha, A. Y. (2020). Acute hypercapnia/ischemia alters the esterification of arachidonic acid and docosahexaenoic acid epoxide metabolites in rat brain neutral lipids. Lipids, 55(1), 7-22. https://doi.org/10.1002/lipd.12197.
Pitino, M. A., Alashmali, S. M., Hopperton, K. E., Unger, S., Pouliot, Y., Doyen, A., O'Connor, D. L., & Bazinet, R. P. (2019). Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques. British Journal of Nutrition, 122(1), 47-55. https://doi.org/10.1017/S0007114519000916.
Quehenberger, O., Dahlberg-Wright, S., Jiang, J., Armando, A. M., & Dennis, E. A. (2018). Quantitative determination of esterified eicosanoids and related oxygenated metabolites after base hydrolysis. Journal of Lipid Research, 59(12), 2436-2445. https://doi.org/10.1194/jlr.D089516.
Rajamani, A., Borkowski, K., Akre, S., Fernandez, A., Newman, J. W., Simon, S. I., & Passerini, A. G. (2019). Oxylipins in triglyceride-rich lipoproteins of dyslipidemic subjects promote endothelial inflammation following a high fat meal. Scientific Reports, 9(1), 8655. https://doi.org/10.1038/s41598-019-45005-5.
Ramsden, C. E., Hennebelle, M., Schuster, S., Keyes, G. S., Johnson, C. D., Kirpich, I. A., Dahlen, J. E., Horowitz, M. S., Zamora, D., Feldstein, A. E., McClain, C. J., Muhlhausler, B. S., Makrides, M., Gibson, R. A., & Taha, A. Y. (2018). Effects of diets enriched in linoleic acid and its peroxidation products on brain fatty acids, oxylipins, and aldehydes in mice. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1863(10), 1206-1213. https://doi.org/10.1016/j.bbalip.2018.07.007.
Robinson, D. T., Palac, H. L., Baillif, V., Van Goethem, E., Dubourdeau, M., Van Horn, L., & Martin, C. R. (2017). Long chain fatty acids and related pro-inflammatory, specialized pro-resolving lipid mediators and their intermediates in preterm human milk during the first month of lactation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 121, 1-6. https://doi.org/10.1016/J.PLEFA.2017.05.003.
Shearer, G. C., & Newman, J. W. (2008). Lipoprotein lipase releases esterified oxylipins from very low-density lipoproteins. Prostaglandins, Leukotrienes and Essential Fatty Acids, 79(6), 215-222. https://doi.org/10.1016/J.PLEFA.2008.09.023.
Taha, A. Y., Hennebelle, M., Yang, J., Zamora, D., Rapoport, S. I., Hammock, B. D., & Ramsden, C. E. (2016). Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins, Leukotrienes and Essential Fatty Acids, 138, 71-80. https://doi.org/10.1016/J.PLEFA.2016.05.004.
Weiss, G. A., Troxler, H., Klinke, G., Rogler, D., Braegger, C., & Hersberger, M. (2013). High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. Lipids in Health and Disease, 12(1), 89. https://doi.org/10.1186/1476-511X-12-89.
Wu, J., Gouveia-Figueira, S., Domellöf, M., Zivkovic, A. M., & Nording, M. L. (2016). Oxylipins, endocannabinoids, and related compounds in human milk: Levels and effects of storage conditions. Prostaglandins & Other Lipid Mediators, 122, 28-36. https://doi.org/10.1016/J.PROSTAGLANDINS.2015.11.002.
Yang, J., Schmelzer, K., Georgi, K., & Hammock, B. D. (2009). Quantitative Profiling Method For Oxylipin Metabolome By Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. Analytical Chemistry, 81(19), 8085-8093. https://doi.org/10.1021/ac901282n.
معلومات مُعتمدة: # 735818-0 the Center for Advanced Processing and Packaging Studies; 1008787 the USDA National Institute of Food and Agriculture, Hatch/Taha
فهرسة مساهمة: Keywords: UPLC-MS/MS; esterified; hydrolysis; lipid oxidation; lipidomic; oxylipins
المشرفين على المادة: 0 (Fatty Acids, Unsaturated)
0 (Oxylipins)
55X04QC32I (Sodium Hydroxide)
9KJL21T0QJ (Linoleic Acid)
تواريخ الأحداث: Date Created: 20210417 Date Completed: 20210611 Latest Revision: 20210611
رمز التحديث: 20221213
DOI: 10.1111/1750-3841.15697
PMID: 33864645
قاعدة البيانات: MEDLINE
الوصف
تدمد:1750-3841
DOI:10.1111/1750-3841.15697