دورية أكاديمية

Repressors of anthocyanin biosynthesis.

التفاصيل البيبلوغرافية
العنوان: Repressors of anthocyanin biosynthesis.
المؤلفون: LaFountain AM; Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269-3043, USA., Yuan YW; Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269-3043, USA.
المصدر: The New phytologist [New Phytol] 2021 Aug; Vol. 231 (3), pp. 933-949. Date of Electronic Publication: 2021 May 28.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Review
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
مواضيع طبية MeSH: Anthocyanins* , Gene Expression Regulation, Plant*, Plant Proteins/genetics ; Plant Proteins/metabolism ; Plants/metabolism ; Transcription Factors/genetics ; Transcription Factors/metabolism
مستخلص: Anthocyanins play a variety of adaptive roles in both vegetative tissues and reproductive organs of plants. The broad functionality of these compounds requires sophisticated regulation of the anthocyanin biosynthesis pathway to allow proper localization, timing, and optimal intensity of pigment deposition. While it is well-established that the committed steps of anthocyanin biosynthesis are activated by a highly conserved MYB-bHLH-WDR (MBW) protein complex in virtually all flowering plants, anthocyanin repression seems to be achieved by a wide variety of protein and small RNA families that function in different tissue types and in response to different developmental, environmental, and hormonal cues. In this review, we survey recent progress in the identification of anthocyanin repressors and the characterization of their molecular mechanisms. We find that these seemingly very different repression modules act through a remarkably similar logic, the so-called 'double-negative logic'. Much of the double-negative regulation of anthocyanin production involves signal-induced degradation or sequestration of the repressors from the MBW protein complex. We discuss the functional and evolutionary advantages of this logic design compared with simple or sequential positive regulation. These advantages provide a plausible explanation as to why plants have evolved so many anthocyanin repressors.
(© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.)
References: Front Plant Sci. 2018 Jun 19;9:830. (PMID: 29971083)
EMBO J. 1987 Dec 1;6(12):3553-8. (PMID: 3428265)
Plant Cell Physiol. 2015 Apr;56(4):650-62. (PMID: 25527830)
Plant Sci. 2019 Oct;287:110173. (PMID: 31481204)
Nature. 2020 Jul;583(7815):277-281. (PMID: 32528176)
Mol Cells. 2012 Jul;34(1):93-101. (PMID: 22699753)
Mol Plant. 2016 Oct 10;9(10):1395-1405. (PMID: 27450422)
Front Plant Sci. 2020 Feb 04;11:7. (PMID: 32117358)
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16475-80. (PMID: 21930922)
Planta. 1973 Sep;110(3):227-35. (PMID: 24474400)
J Exp Bot. 2015 Dec;66(22):7359-76. (PMID: 26417021)
Plant Mol Biol. 2012 Sep;80(1):117-29. (PMID: 21533841)
Plant J. 2001 Nov;28(3):319-32. (PMID: 11722774)
Science. 2017 Nov 17;358(6365):925-928. (PMID: 29146812)
Plant Cell. 2014 May 13;26(5):1967-1980. (PMID: 24824488)
Development. 2016 Sep 15;143(18):3230-7. (PMID: 27624828)
Nat Plants. 2019 Nov;5(11):1145-1153. (PMID: 31712761)
Plant Cell. 2011 Sep;23(9):3089-100. (PMID: 21963667)
Annu Rev Plant Biol. 2006;57:761-80. (PMID: 16669781)
Mol Plant. 2016 Oct 10;9(10):1353-1365. (PMID: 27435853)
Interface Focus. 2012 Aug 6;2(4):407-16. (PMID: 23919125)
J Exp Bot. 2009;60(13):3849-60. (PMID: 19596700)
Development. 2005 Dec;132(24):5387-98. (PMID: 16291794)
Nature. 2015 Jan 29;517(7536):571-5. (PMID: 25533953)
Plant Physiol. 2016 Jan;170(1):74-85. (PMID: 26574599)
EMBO J. 2008 Aug 20;27(16):2214-21. (PMID: 18650934)
J Exp Bot. 2017 Feb 1;68(5):1055-1069. (PMID: 28338881)
Plant Cell Physiol. 2020 Feb 1;61(2):318-330. (PMID: 31642503)
Hortic Res. 2020 Aug 1;7:118. (PMID: 32821401)
Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13579-84. (PMID: 11095727)
Plant Physiol Biochem. 2019 Mar;136:178-187. (PMID: 30685697)
Plant Cell. 2014 Mar;26(3):962-80. (PMID: 24642943)
Trends Plant Sci. 2019 Mar;24(3):275-289. (PMID: 30704824)
Trends Plant Sci. 2010 Oct;15(10):573-81. (PMID: 20674465)
Plant Cell. 1998 Nov;10(11):1801-16. (PMID: 9811790)
Planta. 2018 Jul;248(1):37-48. (PMID: 29546452)
Plant J. 2013 May;74(4):638-51. (PMID: 23425305)
Hortic Res. 2018 Dec 1;5:59. (PMID: 30534386)
New Phytol. 2018 Apr;218(2):554-566. (PMID: 29363139)
J Exp Bot. 2017 Dec 16;68(21-22):5745-5758. (PMID: 29186488)
Plant Physiol. 2013 Jun;162(2):885-96. (PMID: 23629835)
Plant J. 2011 Apr;66(1):94-116. (PMID: 21443626)
Biochim Biophys Acta. 2013 Nov;1829(11):1236-47. (PMID: 24113224)
Front Plant Sci. 2018 Dec 11;9:1742. (PMID: 30619382)
Planta. 2008 Dec;229(1):37-51. (PMID: 18766373)
New Phytol. 2007;175(4):675-685. (PMID: 17688583)
PLoS Genet. 2019 Mar 15;15(3):e1007993. (PMID: 30875369)
Planta. 2015 Jul;242(1):283-93. (PMID: 25916310)
Plant Physiol. 2012 Jan;158(1):423-38. (PMID: 22065421)
New Phytol. 2008;179(4):1004-1016. (PMID: 18537890)
Plant J. 2015 Jul;83(2):300-11. (PMID: 26017690)
Development. 2006 Sep;133(18):3539-47. (PMID: 16914499)
Plant Cell. 2000 Sep;12(9):1619-32. (PMID: 11006336)
EMBO J. 2000 Nov 15;19(22):6150-61. (PMID: 11080161)
Front Plant Sci. 2017 Jan 10;7:2059. (PMID: 28119728)
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666):. (PMID: 25750229)
Nat Biotechnol. 2008 Nov;26(11):1301-8. (PMID: 18953354)
Plant J. 2020 Jun;102(5):965-976. (PMID: 31923329)
DNA Res. 2018 Oct 1;25(5):465-476. (PMID: 29873696)
J Mol Biol. 1961 Jun;3:318-56. (PMID: 13718526)
Genetics. 2013 May;194(1):255-63. (PMID: 23335333)
Plant Cell. 2012 Aug;24(8):3307-19. (PMID: 22892320)
Genes Dev. 1994 Jun 15;8(12):1388-99. (PMID: 7926739)
Plant Cell. 1999 Jul;11(7):1337-50. (PMID: 10402433)
Nature. 2013 Dec 19;504(7480):406-10. (PMID: 24336215)
Plant Physiol. 1995 Mar;107(3):695-702. (PMID: 12228393)
Plant J. 2008 Sep;55(6):940-53. (PMID: 18532978)
Plant Cell Physiol. 2017 Sep 1;58(9):1431-1441. (PMID: 28575507)
Curr Biol. 2020 Mar 9;30(5):802-814.e8. (PMID: 32155414)
Plant Cell. 2000 Dec;12(12):2383-2394. (PMID: 11148285)
J Exp Bot. 2021 Jan 20;72(1):70-91. (PMID: 33313802)
Trends Plant Sci. 2005 Feb;10(2):63-70. (PMID: 15708343)
Curr Opin Plant Biol. 2016 Oct;33:33-41. (PMID: 27310029)
EMBO J. 2002 Oct 1;21(19):5036-46. (PMID: 12356720)
Plant Physiol. 1995 May;108(1):39-46. (PMID: 12228452)
New Phytol. 2018 Feb;217(3):1346-1356. (PMID: 29023752)
Plant Cell Rep. 2019 May;38(5):609-622. (PMID: 30725168)
Plant Sci. 2016 Aug;249:46-58. (PMID: 27297989)
J Exp Zool B Mol Dev Evol. 2011 Jun 15;316(4):241-53. (PMID: 21259417)
Plant J. 2015 Apr;82(1):105-21. (PMID: 25688923)
Science. 1997 Aug 22;277(5329):1113-6. (PMID: 9262483)
Cell. 1992 Mar 6;68(5):955-64. (PMID: 1547495)
Hortic Res. 2017 Jun 07;4:17023. (PMID: 28611922)
Plant Physiol. 1995 May;108(1):47-57. (PMID: 12228453)
Front Plant Sci. 2017 Oct 20;8:1787. (PMID: 29104579)
Science. 2010 Sep 24;329(5999):1616-20. (PMID: 20929839)
Phytochemistry. 2014 Jul;103:38-49. (PMID: 24735825)
Plant Cell. 2006 Apr;18(4):831-51. (PMID: 16531495)
J Exp Bot. 2019 Aug 7;70(15):3809-3824. (PMID: 31020330)
Plant J. 1998 Oct;16(2):263-76. (PMID: 9839469)
Plant Physiol. 2021 Apr 2;185(3):765-780. (PMID: 33793896)
Front Plant Sci. 2020 Jun 25;11:941. (PMID: 32670334)
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20063-6. (PMID: 19104053)
Plant Cell. 1999 Aug;11(8):1433-44. (PMID: 10449578)
PLoS Genet. 2016 Aug 19;12(8):e1006263. (PMID: 27541584)
Mol Plant. 2014 Mar;7(3):570-2. (PMID: 24243681)
J Exp Bot. 2015 Jul;66(13):3765-74. (PMID: 25956880)
Genetics. 2000 Nov;156(3):1349-62. (PMID: 11063707)
Plant Cell. 2011 May;23(5):1795-814. (PMID: 21551388)
Plant J. 2013 Dec;76(6):901-13. (PMID: 24118612)
BMC Plant Biol. 2018 May 8;18(1):82. (PMID: 29739331)
Biosci Biotechnol Biochem. 1999;63(5):930-1. (PMID: 27385573)
Plant Cell. 2009 Nov;21(11):3567-84. (PMID: 19933203)
Proc Natl Acad Sci U S A. 1989 Sep;86(18):7092-6. (PMID: 2674946)
Mol Plant. 2016 May 2;9(5):711-721. (PMID: 26854848)
Mol Plant. 2009 Jul;2(4):790-802. (PMID: 19825656)
Plant Cell Environ. 2018 Aug;41(8):1762-1775. (PMID: 29566255)
Sci Rep. 2018 Sep 6;8(1):13349. (PMID: 30190519)
Genes Dev. 1992 May;6(5):864-75. (PMID: 1577278)
Plant Cell. 2011 Apr;23(4):1512-22. (PMID: 21487097)
Plant J. 2008 Sep;55(6):954-67. (PMID: 18532977)
Curr Opin Genet Dev. 2004 Aug;14(4):422-7. (PMID: 15261659)
Commun Biol. 2020 Jul 27;3(1):396. (PMID: 32719499)
Phytochemistry. 2016 Nov;131:26-43. (PMID: 27569707)
New Phytol. 2019 Jan;221(1):295-308. (PMID: 29959895)
Plant Physiol. 1973 Mar;51(3):436-8. (PMID: 16658347)
Plant Mol Biol. 2017 May;94(1-2):149-165. (PMID: 28286910)
Plant J. 2004 Oct;40(1):22-34. (PMID: 15361138)
Plant J. 2014 Dec;80(6):1108-17. (PMID: 25345491)
Genes Dev. 1997 Jun 1;11(11):1422-34. (PMID: 9192870)
Genes Dev. 2006 Dec 15;20(24):3407-25. (PMID: 17182867)
J Plant Res. 2006 Mar;119(2):137-44. (PMID: 16465453)
Plant Physiol. 2015 Mar;167(3):693-710. (PMID: 25624398)
Plant Physiol. 2007 Dec;145(4):1460-70. (PMID: 17932308)
Mol Cells. 2012 Dec;34(6):501-7. (PMID: 22936387)
Plant Physiol. 2015 Apr;167(4):1448-70. (PMID: 25659381)
Curr Opin Genet Dev. 2008 Aug;18(4):295-303. (PMID: 18590820)
BMC Plant Biol. 2019 Oct 21;19(1):434. (PMID: 31638916)
New Phytol. 2019 Mar;221(4):1919-1934. (PMID: 30222199)
Plant Cell. 2015 Oct;27(10):2860-79. (PMID: 26410301)
Plant J. 2010 Nov;64(4):633-44. (PMID: 21070416)
Planta. 2014 Apr;239(4):765-81. (PMID: 24370633)
Curr Opin Plant Biol. 2003 Feb;6(1):74-8. (PMID: 12495754)
Plant Sci. 2020 Sep;298:110588. (PMID: 32771147)
BMC Plant Biol. 2020 Jun 5;20(1):258. (PMID: 32503504)
Nature. 2016 Aug 25;536(7617):469-73. (PMID: 27479325)
BMC Plant Biol. 2011 May 20;11:93. (PMID: 21599973)
Plant Cell. 2014 Mar;26(3):1118-33. (PMID: 24659329)
J Exp Bot. 2019 Sep 24;70(18):4775-4792. (PMID: 31145783)
Trends Plant Sci. 2015 Mar;20(3):176-85. (PMID: 25577424)
Genome Biol. 2012 Jun 15;13(6):R47. (PMID: 22704043)
Plant Cell. 2012 Feb;24(2):482-506. (PMID: 22345491)
Front Plant Sci. 2017 Mar 09;8:305. (PMID: 28337212)
Nature. 2013 Dec 19;504(7480):401-5. (PMID: 24336200)
FEBS Lett. 2013 May 21;587(10):1543-7. (PMID: 23583450)
Plant J. 2006 May;46(4):533-48. (PMID: 16640592)
Front Plant Sci. 2013 Aug 20;4:321. (PMID: 23970892)
J Exp Bot. 2014 Apr;65(6):1425-38. (PMID: 24523503)
New Phytol. 2017 Jul;215(1):269-280. (PMID: 28418582)
Funct Plant Biol. 2012 Sep;39(8):619-638. (PMID: 32480814)
معلومات مُعتمدة: R01 GM131055 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: anthocyanin biosynthesis; developmental cues; double-negative logic; environmental response; hormones; repressor
المشرفين على المادة: 0 (Anthocyanins)
0 (Plant Proteins)
0 (Transcription Factors)
تواريخ الأحداث: Date Created: 20210417 Date Completed: 20210712 Latest Revision: 20240405
رمز التحديث: 20240405
مُعرف محوري في PubMed: PMC8764531
DOI: 10.1111/nph.17397
PMID: 33864686
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-8137
DOI:10.1111/nph.17397