دورية أكاديمية

Shortened tethering filaments stabilize presynaptic vesicles in support of elevated release probability during LTP in rat hippocampus.

التفاصيل البيبلوغرافية
العنوان: Shortened tethering filaments stabilize presynaptic vesicles in support of elevated release probability during LTP in rat hippocampus.
المؤلفون: Jung JH; Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.; Department of Biology, Texas A&M University, College Station, TX 77843., Kirk LM; Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712., Bourne JN; Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712.; Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045., Harris KM; Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712; kharris@utexas.edu.
المصدر: Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2021 Apr 27; Vol. 118 (17).
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print Cited Medium: Internet ISSN: 1091-6490 (Electronic) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : National Academy of Sciences
مواضيع طبية MeSH: Hippocampus/*physiology , Long-Term Potentiation/*physiology , Synaptic Vesicles/*ultrastructure, Animals ; Brain/metabolism ; Brain/physiology ; Cytoskeleton ; Electron Microscope Tomography/methods ; Hippocampus/metabolism ; Long-Term Potentiation/genetics ; Male ; Neurotransmitter Agents ; Presynaptic Terminals/metabolism ; Presynaptic Terminals/physiology ; Rats ; Rats, Long-Evans ; Synapses/physiology ; Synaptic Membranes/physiology ; Synaptic Membranes/ultrastructure ; Synaptic Vesicles/physiology
مستخلص: Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP.
Competing Interests: The authors declare no competing interest.
References: Neuron. 2014 Oct 22;84(2):416-31. (PMID: 25374362)
J R Soc Interface. 2012 Jul 7;9(72):1555-67. (PMID: 22258550)
Neuron. 2017 Jan 18;93(2):281-290. (PMID: 28103477)
PLoS One. 2013;8(3):e59573. (PMID: 23555711)
Learn Mem. 1997 Jul-Aug;4(2):230-43. (PMID: 10456066)
J Neurosci. 2008 Apr 16;28(16):4151-60. (PMID: 18417694)
Nat Neurosci. 2018 Jan;21(1):33-40. (PMID: 29230057)
Science. 1986 May 23;232(4753):985-8. (PMID: 3704635)
J Cell Biol. 1979 May;81(2):275-300. (PMID: 38256)
Sci STKE. 2006 Oct 10;2006(356):re11. (PMID: 17033044)
PLoS One. 2014 Jun 24;9(6):e100710. (PMID: 24959848)
Hippocampus. 2011 Apr;21(4):354-73. (PMID: 20101601)
Nat Commun. 2017 Jun 21;8:15915. (PMID: 28635948)
Nature. 1992 May 21;357(6375):240-4. (PMID: 1317014)
Neuron. 1992 Dec;9(6):1089-97. (PMID: 1334418)
J Physiol. 1996 Jan 15;490 ( Pt 2):443-54. (PMID: 8821141)
Sci Rep. 2017 Mar 21;7(1):278. (PMID: 28325932)
Nature. 1993 Jan 7;361(6407):31-9. (PMID: 8421494)
Neuron. 2018 Dec 19;100(6):1283-1291. (PMID: 30571941)
Nat Struct Mol Biol. 2007 Oct;14(10):890-6. (PMID: 17906638)
Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):365-72. (PMID: 10212485)
J Comp Neurol. 2003 Oct 6;465(1):90-103. (PMID: 12926018)
Nature. 2014 Nov 13;515(7526):228-33. (PMID: 25296249)
J Neurosci Methods. 1997 Sep 5;76(1):1-5. (PMID: 9334932)
Cell. 2007 Nov 16;131(4):796-808. (PMID: 18022372)
J Biol Chem. 2018 Jun 1;293(22):8645-8655. (PMID: 29666192)
J Neurosci. 2003 Apr 15;23(8):3186-95. (PMID: 12716926)
J Comp Neurol. 2009 Apr 10;513(5):457-68. (PMID: 19226520)
Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):695-705. (PMID: 12740115)
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1098-107. (PMID: 26858418)
J Physiol. 1973 Jul;232(2):357-74. (PMID: 4727085)
Brain Res. 1987 Dec 1;435(1-2):227-34. (PMID: 3427453)
Nature. 1998 Sep 24;395(6700):347-53. (PMID: 9759724)
J Cell Biol. 2010 Jan 11;188(1):145-56. (PMID: 20065095)
J Comp Neurol. 2014 Dec 1;522(17):3861-84. (PMID: 25043676)
J Physiol. 1973 Jul;232(2):331-56. (PMID: 4727084)
Neuron. 2017 Aug 2;95(3):591-607.e10. (PMID: 28772123)
Brain Res. 2002 Dec 6;957(1):61-75. (PMID: 12443981)
Brain Res. 1992 Sep 25;591(2):332-6. (PMID: 1359925)
J Neurosci. 2007 Jun 27;27(26):6868-77. (PMID: 17596435)
J Cell Biol. 2013 May 27;201(5):725-40. (PMID: 23712261)
J Neurosci Methods. 1989 Sep;29(3):217-30. (PMID: 2507828)
Nature. 1994 Oct 20;371(6499):704-7. (PMID: 7935816)
Nature. 2013 Dec 12;504(7479):242-247. (PMID: 24305055)
Nature. 1990 Jul 12;346(6280):177-80. (PMID: 2164158)
Elife. 2016 Dec 19;5:. (PMID: 27991850)
Front Neuroanat. 2018 Sep 13;12:72. (PMID: 30271328)
J Neurosci. 2016 Mar 16;36(11):3222-30. (PMID: 26985032)
معلومات مُعتمدة: R01 NS074644 United States NS NINDS NIH HHS; R56 MH095980 United States MH NIMH NIH HHS; R01 MH104319 United States MH NIMH NIH HHS; R01 NS021184 United States NS NINDS NIH HHS; R21 NS102788 United States NS NINDS NIH HHS; R37 NS021184 United States NS NINDS NIH HHS; R01 MH095980 United States MH NIMH NIH HHS; R01 NS033574 United States NS NINDS NIH HHS
فهرسة مساهمة: Keywords: long-term potentiation; nanoscale; synaptic plasticity; ultrastructure
المشرفين على المادة: 0 (Neurotransmitter Agents)
تواريخ الأحداث: Date Created: 20210420 Date Completed: 20211207 Latest Revision: 20211214
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8092591
DOI: 10.1073/pnas.2018653118
PMID: 33875591
قاعدة البيانات: MEDLINE
الوصف
تدمد:1091-6490
DOI:10.1073/pnas.2018653118