دورية أكاديمية

Desulfovibrio diazotrophicus sp. nov., a sulfate-reducing bacterium from the human gut capable of nitrogen fixation.

التفاصيل البيبلوغرافية
العنوان: Desulfovibrio diazotrophicus sp. nov., a sulfate-reducing bacterium from the human gut capable of nitrogen fixation.
المؤلفون: Sayavedra L; Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK., Li T; Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China., Bueno Batista M; Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK., Seah BKB; Max Planck Institute for Developmental Biology, Tübingen, Germany., Booth C; Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK., Zhai Q; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China., Chen W; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China., Narbad A; Gut Health and Microbes, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
المصدر: Environmental microbiology [Environ Microbiol] 2021 Jun; Vol. 23 (6), pp. 3164-3181. Date of Electronic Publication: 2021 May 14.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: England NLM ID: 100883692 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1462-2920 (Electronic) Linking ISSN: 14622912 NLM ISO Abbreviation: Environ Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford : Blackwell Science, 1999-
مواضيع طبية MeSH: Desulfovibrio*/genetics , Desulfovibrio*/metabolism , Nitrogen Fixation*, Animals ; Bacteria/metabolism ; Humans ; Nitrogenase/metabolism ; Oxidation-Reduction ; Phylogeny ; Sulfates
مستخلص: Sulfate-reducing bacteria (SRB) are widespread in human guts, yet their expansion has been linked to colonic diseases. We report the isolation, sequencing and physiological characterization of strain QI0027 T , a novel SRB species belonging to the class Desulfovibrionia. Metagenomic sequencing of stool samples from 45 Chinese individuals, and comparison with 1690 Desulfovibrionaceae metagenome-assembled genomes recovered from humans of diverse geographic locations, revealed the presence of QI0027 T in 22 further individuals. QI0027 T encoded nitrogen fixation genes and based on the acetylene reduction assay, actively fixed nitrogen. Transcriptomics revealed that QI0027 T overexpressed 42 genes in nitrogen-limiting conditions compared to cultures supplemented with ammonia, including genes encoding nitrogenases, a urea uptake system and the urease complex. Reanalyses of 835 public stool metatranscriptomes showed that nitrogenase genes from Desulfovibrio bacteria were expressed in six samples suggesting that nitrogen fixation might be active in the gut environment. Although frequently thought of as a nutrient-rich environment, nitrogen fixation can occur in the human gut. Animals are often nitrogen limited and have evolved diverse strategies to capture biologically active nitrogen, ranging from amino acid transporters to stable associations with beneficial microbes that provide fixed nitrogen. QI0027 T is the first Desulfovibrio human isolate for which nitrogen fixation has been demonstrated, suggesting that some sulfate-reducing bacteria could also play a role in the availability of nitrogen in the gut.
(© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)
التعليقات: Erratum in: Environ Microbiol. 2022 Oct;24(10):4971. (PMID: 36254869)
References: Abby, S.S., Cury, J., Guglielmini, J., Néron, B., Touchon, M., and Rocha, E.P.C. (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6: 23080.
Abby, S.S., Néron, B., Ménager, H., Touchon, M., and Rocha, E.P.C. (2014) MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS One 9: e110726.
Ailloud, F., Didelot, X., Woltemate, S., Pfaffinger, G., Overmann, J., Bader, R.C., et al. (2019) Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat Commun 10: 2273.
Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K.L., Tyson, G.W., and Nielsen, P.H. (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31: 533-538.
Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z.J., et al. (2020) A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 39: 105.
Alneberg, J., Bjarnason, B.S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z., et al. (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11: 1144-1146.
Amann, R., and Fuchs, B.M. (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6: 339-348.
Anderson, J.K., Smith, T.G., and Hoover, T.R. (2010) Sense and sensibility: flagellum-mediated gene regulation. Trends Microbiol 18: 30-37.
Ansorge, R., Romano, S., Sayavedra, L., Porras, M.A.G., Kupczok, A., Tegetmeyer, H.E., et al. (2019) Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol 4: 2487-2497.
Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17: 690-703.
Baker, G.C., Smith, J.J., and Cowan, D.A. (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55: 541-555.
Beier, D., and Gross, R. (2006) Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9: 143-152.
Bergersen, F., and Hipsley, E. (1970) The presence of N2-fixing bacteria in the intestines of man and animals. Microbiology 60: 61-65.
Bombar, D., Paerl, R.W., and Riemann, L. (2016) Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol 24: 916-927.
Brettin, T., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Olsen, G.J., et al. (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5: 8365.
Bueno Batista, M., and Dixon, R. (2019) Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem Soc Trans 47: 603.
Carbonero, F., Benefiel, A.C., Alizadeh-Ghamsari, A.H., and Gaskins, H.R. (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3: 448.
Carbonero, F., and Gaskins, H.R. (2015) Sulfate-reducing bacteria in the human gut microbiome. In Encyclopedia of Metagenomics: Environmental Metagenomics, pp. 617-619. Boston, MA: Springer.
Chen, J., Toth, J., and Kasap, M. (2001) Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. J Ind Microbiol Biotechnol 27: 281-286.
Coutinho, C., Coutinho-Silva, R., Zinkevich, V., Pearce, C.B., Ojcius, D.M., and Beech, I. (2017) Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb Pathog 112: 126-134.
Dai, Z.-L., Wu, G., and Zhu, W.-Y. (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16: 1768-1786.
Dilworth, M. (1966) Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta (BBA)-Gen Subj 127: 285-294.
Dixon, R., and Kahn, D. (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2: 621-631.
Dos Santos, P.C., Fang, Z., Mason, S.W., Setubal, J.C., and Dixon, R. (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13: 162.
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792-1797.
Fischbach, M.A., and Sonnenburg, J.L. (2011) Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10: 336-347.
Fröhlich, J., Sass, H., Babenzien, H.-D., Kuhnigk, T., Varma, A., Saxena, S., et al. (1999) Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Can J Microbiol 45: 145-152.
Fuller, M.F., and Reeds, P.J. (1998) Nitrogen cycling in the gut. Annu Rev Nutr 18: 385-411.
Gaby, J.C., and Buckley, D.H. (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database 2014: bau001.
Gong, Q.H., Shi, X.R., Hong, Z.Y., Pan, L.L., Liu, X.H., and Zhu, Y.Z. (2011) A new hope for neurodegeneration: possible role of hydrogen sulfide. J Alzheimers Dis 24: 173-182.
Hardy, R.W., Holsten, R., Jackson, E., and Burns, R. (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43: 1185-1207.
He, Q., Gao, Y., Jie, Z., Yu, X., Laursen, J.M., Xiao, L., et al. (2017) Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. Gigascience 6: gix050.
Huergo, L.F., and Dixon, R. (2015) The emergence of 2-oxoglutarate as a master regulator metabolite. Microbiol Mol Biol Rev 79: 419-435.
Igai, K., Itakura, M., Nishijima, S., Tsurumaru, H., Suda, W., Tsutaya, T., et al. (2016) Nitrogen fixation and nifH diversity in human gut microbiota. Sci Rep 6: 31942.
Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S. (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9: 5114.
Kaláb, M., Yang, A.-F., and Chabot, D. (2008) Conventional scanning electron microscopy of bacteria. Infocus Mag 10: 42-61.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
Kelly, D.J., and Thomas, G.H. (2001) The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 25: 405-424.
Knapp, A.N. (2012) The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol 3: 374.
Kuhnigk, T., Branke, J., Krekeler, D., Cypionka, H., and König, H. (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19: 139-149.
Kuykendall, L., Roy, M., O'Neill, J., and Devine, T. (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38: 358-361.
Lesser, M.P., Falcón, L.I., Rodríguez-Román, A., Enríquez, S., Hoegh-Guldberg, O., and Iglesias-Prieto, R. (2007) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346: 143-152.
Letunic, I., and Bork, P. (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44: W242-W245.
Levin, E.J., Quick, M., and Zhou, M. (2009) Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462: 757-761.
Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., et al. (2017) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5: 14.
Liao, Y., Smyth, G.K., and Shi, W. (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923-930.
Lloyd-Price, J., Arze, C., Ananthakrishnan, A.N., Schirmer, M., Avila-Pacheco, J., Poon, T.W., et al. (2019) Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569: 655-662.
Lopez-Cortes, A., Fardeau, M.L., Fauque, G., Joulian, C., and Ollivier, B. (2006) Reclassification of the sulfate- and nitrate-reducing bacterium Desulfovibrio vulgaris subsp oxamicus as Desulfovibrio oxamicus sp nov., comb. nov. Int J Syst Evol Microbiol 56: 1495-1499.
Loubinoux, J., Jaulhac, B., Piemont, Y., Monteil, H., and Le Faou, A.E. (2003) Isolation of sulfate-reducing bacteria from human thoracoabdominal pus. J Clin Microbiol 41: 1304-1306.
Lucker, S., Steger, D., Kjeldsen, K.U., MacGregor, B.J., Wagner, M., and Loy, A. (2007) Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. J Microbiol Methods 69: 523-528.
Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., et al. (2014) CDD: NCBI's conserved domain database. Nucleic Acids Res 43: D222-D226.
McKinlay, J.B., and Harwood, C.S. (2010) Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci U S A 107: 11669-11675.
Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.-P., and Göker, M. (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
Meier-Kolthoff, J.P., Klenk, H.-P., and Göker, M. (2014) Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64: 352-356.
Miller, L.T. (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584-586.
Mohamed, N.M., Colman, A.S., Tal, Y., and Hill, R.T. (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10: 2910-2921.
Nava, G.M., Carbonero, F., Croix, J.A., Greenberg, E., and Gaskins, H.R. (2012) Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J 6: 57-70.
Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. (2016) metaSPAdes: a new versatile de novo metagenomics assembler. arXiv:160403071 [q-bio].
Ortega, Á., Zhulin, I.B., and Krell, T. (2017) Sensory repertoire of bacterial chemoreceptors. Microbiol Mol Biol Rev 81: e00033-17.
Oxley, A.P., Lanfranconi, M.P., Würdemann, D., Ott, S., Schreiber, S., McGenity, T.J., et al. (2010) Halophilic archaea in the human intestinal mucosa. Environ Microbiol 12: 2398-2410.
Parks, D.H., Chuvochina, M., Chaumeil, P.-A., Rinke, C., Mussig, A.J., and Hugenholtz, P. (2019) Selection of representative genomes for 24,706 bacterial and archaeal species clusters provide a complete genome-based taxonomy. BioRxiv: 771964.
Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25: 1043-1055.
Parrello, B., Butler, R., Chlenski, P., Olson, R., Overbeek, J., Pusch, G.D., et al. (2019) A machine learning-based service for estimating quality of genomes using PATRIC. BMC Bioinformatics 20: 486.
Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., et al. (2019) Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176: 649-662.e20.
Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong, D.T., et al. (2017) Accessible, curated metagenomic data through ExperimentHub. Nat Methods 14: 1023-1024.
Postgate, J. (1970) Nitrogen fixation by sporulating sulphate-reducing bacteria including rumen strains. Microbiology 63: 137-139.
Postgate, J.R., and Kent, H.M. (1985) Diazotrophy within Desulfovibrio. Microbiology 131: 2119-2122.
Price, M.N., Dehal, P.S., and Arkin, A.P. (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26: 1641-1650.
Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., et al. (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature 513: 59-64.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.
Rascio, N., and La Rocca, N. (2013) Biological nitrogen fixation. Nat Educ Knowl 3: 15.
Reese, A.T., Pereira, F.C., Schintlmeister, A., Berry, D., Wagner, M., Hale, L.P., et al. (2018) Microbial nitrogen limitation in the mammalian large intestine. Nat Microbiol 3: 1441-1450.
Richter, M., and Rossello-Mora, R. (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126-19131.
Riederer-Henderson, M.-A., and Wilson, P. (1970) Nitrogen fixation by sulphate-reducing bacteria. Microbiology 61: 27-31.
Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.
Robinson, M.D., and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11: R25.
Sayavedra, L., Kleiner, M., Ponnudurai, R., Wetzel, S., Pelletier, E., Barbe, V., et al. (2015) Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 4: e07966.
Schöllhorn, R., and Burris, R. (1967) Acetylene as a competitive inhibitor of N2 fixation. Proc Natl Acad Sci U S A 58: 213-216.
Schureck, M.A., Maehigashi, T., Miles, S.J., Marquez, J., Cho, S.E., Erdman, R., and Dunham, C.M. (2014) Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. J Biol Chem 289: 1060-1070.
Scott, K.P., Gratz, S.W., Sheridan, P.O., Flint, H.J., and Duncan, S.H. (2013) The influence of diet on the gut microbiota. Pharmacol Res 69: 52-60.
Seefeldt, L.C., Hoffman, B.M., and Dean, D.R. (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78: 701-722.
Sender, R., Fuchs, S., and Milo, R. (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14: e1002533.
Shiozaki, T., Fujiwara, A., Ijichi, M., Harada, N., Nishino, S., Nishi, S., et al. (2018) Diazotroph community structure and the role of nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic Ocean). Limnol Oceanogr 63: 2191-2205.
Shivani, Y., Subhash, Y., Sasikala, C., and Ramana, C.V. (2017) Halodesulfovibrio spirochaetisodalis gen. nov. sp. nov. and reclassification of four Desulfovibrio spp. Int J Syst Evol Microbiol 67: 87-93.
Soutourina, O.A., and Bertin, P.N. (2003) Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27: 505-523.
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
Sullivan, M.J., Petty, N.K., and Beatson, S.A. (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27: 1009-1010.
Takii, S., Hanada, S., Hase, Y., Tamaki, H., Uyeno, Y., Sekiguchi, Y., and Matsuura, K. (2008) Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids. Int J Syst Evol Microbiol 58: 2433-2438.
The Integrative HMP (iHMP) Research Network Consortium. (2019) The integrative human microbiome project. Nature 569: 641-648.
Tichi, M.A., and Tabita, F.R. (2000) Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Arch Microbiol 174: 322-333.
Vaas, L.A.I., Sikorski, J., Hofner, B., Fiebig, A., Buddruhs, N., Klenk, H.P., and Goker, M. (2013) opm: an R package for analysing OmniLog((R)) phenotype microarray data. Bioinformatics 29: 1823-1824.
Vainshtein, M., Hippe, H., and Kroppenstedt, R.M. (1992) Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol 15: 554-566.
Vasoo, S., Mason, E.L., Gustafson, D.R., Cunningham, S.A., Cole, N.C., Vetter, E.A., et al. (2014) Desulfovibrio legallii prosthetic shoulder joint infection and review of antimicrobial susceptibility and clinical characteristics of Desulfovibrio infections. J Clin Microbiol 52: 3105-3110.
Waite, D.W., Chuvochina, M., Pelikan, C., Parks, D.H., Yilmaz, P., Wagner, M., et al. (2020) Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 70: 5972-6016.
Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., et al. (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963.
Wattam, A.R., Abraham, D., Dalay, O., Disz, T.L., Driscoll, T., Gabbard, J.L., et al. (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42: D581-D591.
Wayne, P. (1999) NCCLS: National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing.
Wen, C., Zheng, Z., Shao, T., Liu, L., Xie, Z., Le Chatelier, E., et al. (2017) Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol 18: 142.
Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13: e1005595.
Wick, R.R., Schultz, M.B., Zobel, J., and Holt, K.E. (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31: 3350-3352.
Wu, M., and Scott, A.J. (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28: 1033-1034.
Xie, H., Guo, R., Zhong, H., Feng, Q., Lan, Z., Qin, B., et al. (2016) Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst 3: 572-584.e573.
Zhang, W., and Wen, C.-K. (2010) Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. Plant Physiol Biochem 48: 45-53.
Zubkov, M.V., Fuchs, B.M., Eilers, H., Burkill, P.H., and Amann, R. (1999) Determination of total protein content of bacterial cells by SYPRO staining and flow cytometry. Appl Environ Microbiol 65: 3251-3257.
معلومات مُعتمدة: BBS/E/F/00044453 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/R012512/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BBS/E/F/000PR10356 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/R012490/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/N003608/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BBS/E/F/00042241 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BBS/E/F/000PR10353 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/N013476/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BBS/E/F/000PR10355 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BBS/E/F/000PR10346 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BBS/OS/NW/000006 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
المشرفين على المادة: 0 (Sulfates)
EC 1.18.6.1 (Nitrogenase)
تواريخ الأحداث: Date Created: 20210420 Date Completed: 20211015 Latest Revision: 20221018
رمز التحديث: 20240628
DOI: 10.1111/1462-2920.15538
PMID: 33876566
قاعدة البيانات: MEDLINE
الوصف
تدمد:1462-2920
DOI:10.1111/1462-2920.15538