دورية أكاديمية

A framework for allocating conservation resources among multiple threats and actions.

التفاصيل البيبلوغرافية
العنوان: A framework for allocating conservation resources among multiple threats and actions.
المؤلفون: Moore JL; School of Biological Sciences, Monash University, Clayton, Victoria, Australia.; School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.; Australian Research Centre for Urban Ecology, The University of Melbourne, Parkville, Victoria, Australia., Camaclang AE; School of Biological Sciences, Monash University, Clayton, Victoria, Australia., Moore AL; School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.; Unité de Mathématiques et Informatique Appliquées (MIAT), Toulouse INRA, Auzeville, France., Hauser CE; School of Biological Sciences, Monash University, Clayton, Victoria, Australia.; School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia., Runge MC; Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, Maryland, USA., Picheny V; Unité de Mathématiques et Informatique Appliquées (MIAT), Toulouse INRA, Auzeville, France., Rumpff L; School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
المصدر: Conservation biology : the journal of the Society for Conservation Biology [Conserv Biol] 2021 Oct; Vol. 35 (5), pp. 1639-1649. Date of Electronic Publication: 2021 Apr 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology Country of Publication: United States NLM ID: 9882301 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1523-1739 (Electronic) Linking ISSN: 08888892 NLM ISO Abbreviation: Conserv Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology
Original Publication: Boston, Mass. : Blackwell Scientific Publications,
مواضيع طبية MeSH: Conservation of Natural Resources* , Introduced Species*, Australia ; Cost-Benefit Analysis ; Plants
مستخلص: Land managers decide how to allocate resources among multiple threats that can be addressed through multiple possible actions. Additionally, these actions vary in feasibility, effectiveness, and cost. We sought to provide a way to optimize resource allocation to address multiple threats when multiple management options are available, including mutually exclusive options. Formulating the decision as a combinatorial optimization problem, our framework takes as inputs the expected impact and cost of each threat for each action (including do nothing) and for each overall budget identifies the optimal action to take for each threat. We compared the optimal solution to an easy to calculate greedy algorithm approximation and a variety of plausible ranking schemes. We applied the framework to management of multiple introduced plant species in Australian alpine areas. We developed a model of invasion to predict the expected impact in 50 years for each species-action combination that accounted for each species' current invasion state (absent, localized, widespread); arrival probability; spread rate; impact, if present, of each species; and management effectiveness of each species-action combination. We found that the recommended action for a threat changed with budget; there was no single optimal management action for each species; and considering more than one candidate action can substantially increase the management plan's overall efficiency. The approximate solution (solution ranked by marginal cost-effectiveness) performed well when the budget matched the cost of the prioritized actions, indicating that this approach would be effective if the budget was set as part of the prioritization process. The ranking schemes varied in performance, and achieving a close to optimal solution was not guaranteed. Global sensitivity analysis revealed a threat's expected impact and, to a lesser extent, management effectiveness were the most influential parameters, emphasizing the need to focus research and monitoring efforts on their quantification.
(© 2021 Society for Conservation Biology.)
References: Auerbach, N. A., Tulloch, A. I. T., & Possingham, H. P. (2014). Informed actions: Where to cost effectively manage multiple threats to species to maximize return on investment. Ecological Applications, 24, 1357-1373.
Booy, O., Mill, A. C., Roy, H. E., Hiley, A., Moore, N., Robertson, P., Baker, S., Brazier, M., Bue, M., Bullock, R., Campbell, S., Eyre, D., Foster, J., Hatton-Ellis, M., Long, J., Macadam, C., Morrison-Bell, C., Mumford, J., Newman, J., … Wyn, G. (2017). Risk management to prioritise the eradication of new and emerging invasive non-native species. Biological Invasions, 19, 2401-2417.
Carwardine, J., Martin, T. G., Firn, J., Reyes, R. P., Nicol, S., Reeson, A., Grantham, H. S., Stratford, D., Kehoe, L., & Chadès, I. (2019). Priority Threat Management for biodiversity conservation: A handbook. Journal of Applied Ecology, 56, 481-490.
Carwardine, J., O'Connor, T., Legge, S., Mackey, B., Possingham, H. P., & Martin, T. G. (2012). Prioritizing threat management for biodiversity conservation. Conservation Letters, 5, 196-204.
Cattarino, L., Hermoso, V., Bradford, L. W., Carwardine, J., Wilson, K. A., Kennard, M. J., & Linke, S. (2016). Accounting for continuous species' responses to management effort enhances cost-effectiveness of conservation decisions. Biological Conservation, 197, 116-123.
Chadés, I., Nicol, S., van Leeuwen, S., Walters, B., Firn, J., Reeson, A., Martin, T. G., & Carwardine, J. (2015). Benefits of integrating complementarity into priority threat management. Conservation Biology, 29, 525-536.
Dodd, A. J., Ainsworth, N., Hauser, C. E., Burgman, M. A., & McCarthy, M. A. (2017). Prioritizing plant eradication targets by re-framing the project prioritization protocol (PPP) for use in biosecurity applications. Biological Invasions, 19, 859-873.
Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M., & Liebhold, A. M. (2012). Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecology Letters, 15, 803-812.
Ferraro, P. J., & Pattanayak, S. K. (2006). Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLOS Biology, 4, e105.
Firn, J., Martin, T. G., Chadès, I., Walters, B., Hayes, J., Nicol, S., & Carwardine, J. (2015). Priority threat management of non-native plants to maintain ecosystem integrity across heterogeneous landscapes. Journal of Applied Ecology, 52, 1135-1144.
Gregory, R., Failing, L., Harstone, M., Long, G., McDaniels, T., & Ohlson, D. (2012). Structured decision making: A practical guide to environmental management choices. John Wiley & Sons.
Hanson, J. O., Schuster, R., Strimas-Mackey, M., & Bennett, J. R. (2019). Optimality in prioritizing conservation projects. Methods in Ecology and Evolution, 10, 1655-1663.
Hauser, C. E., & McCarthy, M. A. (2009). Streamlining 'search and destroy': Cost-effective surveillance for invasive species management. Ecology Letters, 12, 683-692.
Joseph, L. N., Maloney, R. F., & Possingham, H. P. (2009). Optimal allocation of resources among threatened species: A project prioritization protocol. Conservation Biology, 23, 328-338.
Kapos, V., Balmford, A., Aveling, R., Bubb, P., Carey, P., Entwistle, A., Hopkins, J., Mulliken, T., Safford, R., & Stattersfield, A. (2009). Outcomes, not implementation, predict conservation success. Oryx, 43, 336-342.
Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Springer-Verlag.
Kerr Natalie, Z., Baxter, Peter W.J., Salguero-Gómez, Roberto, Wardle, Glenda M., Buckley, & Yvonne M. (2016). Prioritizing management actions for invasive populations using cost, efficacy, demography and expert opinion for 14 plant species world-wide. Journal of Applied Ecology, 53 (2), 305-316. https://doi.org/10.1111/1365-2664.12592.
Kumschick, S., Bacher, S., Evans, T., Markova, Z., Pergl, J., Pysek, P., Vaes-Petignat, S., van der Veer, G., Vila, M., & Nentwig, W. (2015). Comparing impacts of alien plants and animals in Europe using a standard scoring system. Journal of Applied Ecology, 52, 552-561.
Maguire, L. A. (2004). What can decision analysis do for invasive species management? Risk Analysis, 24, 859-868.
McBride, M. F., & Burgman, M. A. (2012). What is expert knowledge, how is such knowledge gathered, and how do we use it to address questions in landscape ecology? In A.H. Perera, C. A. Drew, & C. J. Johnson (Eds.), Expert knowledge and its application in landscape ecology (pp. 11-38). Springer New York.
McDougall, K. L., Morgan, J. W., NG, W., & Williams, R. J. (2005). Plant invasions in treeless vegetation of the Australian Alps. Perspectives in Plant Ecology Evolution and Systematics, 7, 159-171.
McGeoch, M. A., Genovesi, P., Bellingham, P. J., Costello, M. J., McGrannachan, C., & Sheppard, A. (2015). Prioritizing species, pathways, and sites to achieve conservation targets for biological invasion. Biological Invasions, 18, 299-314.
Moore, J. L., & Runge, M. C. (2012). Combining structured decision making and value-of-information analyses to identify robust management strategies. Conservation Biology, 26, 810-820.
Moore, J. L., Runge, M. C., Webber, B. L., & Wilson, J. R. U. (2011). Contain or eradicate? Optimizing the management goal for Australian acacia invasions in the face of uncertainty. Diversity and Distributions, 17, 1047-1059.
Morgan, J. W., & Carnegie, V. (2009). Backcountry Huts as introduction points for invasion by non-native species into subalpine vegetation. Arctic, Antarctic, and Alpine Research, 41, 238-245.
Murdoch, W., Polasky, S., Wilson, K. A., Possingham, H. P., Kareiva, P., & Shaw, R. (2007). Maximizing return on investment in conservation. Biological Conservation, 139, 375-388.
Pianosi, F., Sarrazin, F., & Wagener, T. (2015). A Matlab toolbox for global sensitivity analysis. Environmental Modelling & Software, 70, 80-85.
Pouzols, F. M., Burgman, M. A., & Moilanen, A. (2012). Methods for allocation of habitat management, maintenance, restoration and offsetting, when conservation actions have uncertain consequences. Biological Conservation, 153, 41-50.
Rauschert, E. S. J., & Shea, K. (2017). Competition between similar invasive species: Modeling invasional interference across a landscape. Population Ecology, 59, 79-88.
Ricciardi, A., Hoopes, M. F., Marchetti, M. P., & Lockwood, J. L. (2013). Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs, 83, 263-282.
Runge, M. C. (2011). An introduction to adaptive management for threatened and endangered species. Journal of Fish and Wildlife Management, 2, 220-233.
Runge, M. C., Converse, S. J., & Lyons, J. E. (2011). Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biological Conservation, 144, 1214-1223.
Saltelli, A., & Annoni, P. (2010). How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software, 25, 1508-1517.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Introduction to sensitivity analysis. In Global sensitivity analysis: The primer (pp. 1-51). John Wiley & Sons.
Sheppard, C. S., Carboni, M., Essl, F., Seebens, H., Thuiller, W., & DivGrass, C. (2018). It takes one to know one: Similarity to resident alien species increases establishment success of new invaders. Diversity and Distributions, 24, 680-691.
Simberloff, D., & Von Holle, B. (1999). Positive interactions of nonindigenous species: Invasional meltdown? Biological Invasions, 1, 21-32.
Soll, J. B., & Klayman, J. (2004). Overconfidence in interval estimates. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 299-314.
Speirs-Bridge, A., Fidler, F., McBride, M., Flander, L., Cumming, G., & Burgman, M. (2010). Reducing overconfidence in the interval judgments of experts. Risk Analysis, 30, 512-523.
Wu, C.-H., Dodd, A. J., Hauser, C. E., & McCarthy, M. A. (2020). Reallocating budgets among ongoing and emerging conservation projects. Conservation Biology. https://doi.org/10.1111/cobi.13585.
فهرسة مساهمة: Keywords: análisis de decisión; asignación de recursos; decision analysis; especie introducida; introduced species; invasion; invasión; management priority; multiple choice knapsack problem; optimización; optimization; prioridad de manejo; problema de opción múltiple de la mochila; resource allocation
Local Abstract: [Publisher, Spanish; Castilian] Un Marco de Referencia para Asignar Recursos para la Conservación entre Múltiples Amenazas y Acciones Resumen Los administradores de tierras deciden cómo asignar recursos entre múltiples amenazas que pueden abordarse por medio de múltiples acciones. Adicionalmente, estas acciones varían en viabilidad, efectividad y costo. Buscamos proporcionar una manera para optimizar la asignación de recursos para abordar varias amenazas cuando están disponibles muchas opciones de manejo, incluyendo opciones mutuamente excluyentes. Con una formulación de la decisión como un problema combinatorio de optimización, nuestro marco de referencia toma como entradas el impacto esperado y el costo de cada amenaza para cada acción (incluyendo hacer nada) y para cada presupuesto generalizado identifica la acción óptima a realizar ante cada amenaza. Comparamos la solución óptima con una aproximación de un algoritmo avaricioso fácil de calcular y una variedad de esquemas plausibles de clasificación. Aplicamos el marco de trabajo al manejo de múltiples especies de plantas introducidas en las áreas alpinas de Australia. Desarrollamos un modelo de invasión para predecir el impacto esperado en 50 años para cada combinación de especie-acción que consideró el estado actual de invasión para cada especie (ausente, localizada, ampliamente distribuida), la probabilidad de invasión, la tasa de esparcimiento, el impacto, cuando abundante, de cada especie y la efectividad de manejo de cada combinación especie-acción. Descubrimos que la acción recomendada para una amenaza cambia con el presupuesto, que no existe una acción única de manejo óptimo para cada especie y que considerar más de una acción candidata puede incrementar sustancialmente la eficiencia general del plan de manejo. La solución aproximada (solución clasificada por rentabilidad) tuvo un buen desempeño cuando el presupuesto fue igual al costo de las acciones prioritarias, lo que indica que esta estrategia sería efectiva si el presupuesto está fijado como parte del proceso de priorización. Los esquemas de clasificación variaron en cuanto a desempeño, y lograr una solución cercana a lo óptimo no estuvo garantizado. El análisis de sensibilidad global reveló que el impacto esperado de una amenaza y, a menor grado, la efectividad del manejo no fueron los parámetros con mayor influencia, lo que enfatiza la necesidad de enfocar la investigación y los esfuerzos de monitoreo en la cuantificación del impacto esperado y la efectividad del manejo.
تواريخ الأحداث: Date Created: 20210428 Date Completed: 20211028 Latest Revision: 20211028
رمز التحديث: 20231215
DOI: 10.1111/cobi.13748
PMID: 33909929
قاعدة البيانات: MEDLINE
الوصف
تدمد:1523-1739
DOI:10.1111/cobi.13748