دورية أكاديمية

ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth.

التفاصيل البيبلوغرافية
العنوان: ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth.
المؤلفون: Remsberg JR; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Suciu RM; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Zambetti NA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA., Hanigan TW; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Firestone AJ; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA., Inguva A; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA., Long A; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA., Ngo N; Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA., Lum KM; Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA., Henry CL; Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA., Richardson SK; Department of Chemistry, University of Connecticut, Storrs, CT, USA., Predovic M; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA., Huang B; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA., Dix MM; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA., Howell AR; Department of Chemistry, University of Connecticut, Storrs, CT, USA., Niphakis MJ; Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA. MIIP@lundbeck.com., Shannon K; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA. Kevin.Shannon@ucsf.edu.; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA. Kevin.Shannon@ucsf.edu., Cravatt BF; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. cravatt@scripps.edu.
المصدر: Nature chemical biology [Nat Chem Biol] 2021 Aug; Vol. 17 (8), pp. 856-864. Date of Electronic Publication: 2021 Apr 29.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مواضيع طبية MeSH: Cell Membrane/*metabolism , Hydrolases/*metabolism , Leukemia, Myeloid, Acute/*metabolism , Leukemia, Promyelocytic, Acute/*metabolism , ras Proteins/*metabolism, Cell Proliferation ; Cells, Cultured ; Humans ; Leukemia, Myeloid, Acute/pathology ; Leukemia, Promyelocytic, Acute/pathology ; Lipoylation ; Microsomes, Liver/chemistry ; Microsomes, Liver/metabolism ; Molecular Structure
مستخلص: Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of NRAS-mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for NRAS-mutant cancers.
(© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.)
التعليقات: Comment in: Nat Chem Biol. 2021 Aug;17(8):840-841. doi: 10.1038/s41589-021-00789-4. (PMID: 33927410)
References: Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007). (PMID: 1738458410.1038/nrc2109)
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013). (PMID: 24256730427405110.1038/nature12796)
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019). (PMID: 3166670110.1038/s41586-019-1694-1)
Omerovic, J., Laude, A. J. & Prior, I. A. Ras proteins: paradigms for compartmentalised and isoform-specific signalling. Cell. Mol. Life Sci. 64, 2575–2589 (2007). (PMID: 17628742256123810.1007/s00018-007-7133-8)
Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21 ras to the plasma membrane. Cell 63, 133–139 (1990). (PMID: 220827710.1016/0092-8674(90)90294-O)
Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005). (PMID: 1570580810.1126/science.1105654)
Dekker, F. J. et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat. Chem. Biol. 6, 449–456 (2010). (PMID: 2041887910.1038/nchembio.362)
Hedberg, C. et al. Development of highly potent inhibitors of the Ras-targeting human acyl protein thioesterases based on substrate similarity design. Angew. Chem. Int. Ed. Engl. 50, 9832–9837 (2011). (PMID: 2190518510.1002/anie.201102965)
Martin, B. R., Wang, C., Adibekian, A., Tully, S. E. & Cravatt, B. F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2011). (PMID: 22056678324861610.1038/nmeth.1769)
Duncan, J. A. & Gilman, A. G. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J. Biol. Chem. 273, 15830–15837 (1998). (PMID: 962418310.1074/jbc.273.25.15830)
Rusch, M. et al. Identification of acyl protein thioesterases 1 and 2 as the cellular targets of the Ras-signaling modulators palmostatin B and M. Angew. Chem. Int. Ed. Engl. 50, 9838–9842 (2011). (PMID: 2190518610.1002/anie.201102967)
Lin, D. T. & Conibear, E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. eLife 4, e11306 (2015). (PMID: 26701913475573710.7554/eLife.11306)
Martin, B. R. & Cravatt, B. F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135–138 (2009). (PMID: 19137006277506810.1038/nmeth.1293)
Yokoi, N. et al. Identification of PSD-95 depalmitoylating enzymes. J. Neurosci. 36, 6431–6444 (2016). (PMID: 27307232501578010.1523/JNEUROSCI.0419-16.2016)
Jia, L. et al. A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation. J. Biol. Chem. 289, 6249–6257 (2014). (PMID: 24385443393769010.1074/jbc.M113.531475)
Won, S. J. & Martin, B. R. Temporal profiling establishes a dynamic S-palmitoylation cycle. ACS Chem. Biol. 13, 1560–1568 (2018). (PMID: 29733200619252210.1021/acschembio.8b00157)
Zhang, M. M., Tsou, L. K., Charron, G., Raghavan, A. S. & Hang, H. C. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc. Natl Acad. Sci. USA 107, 8627–8632 (2010). (PMID: 20421494288930510.1073/pnas.0912306107)
Cao, Y. et al. ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nat. Chem. Biol. 15, 1232–1240 (2019). (PMID: 31740833687166010.1038/s41589-019-0399-y)
Adibekian, A. et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat. Chem. Biol. 7, 469–478 (2011). (PMID: 21572424311892210.1038/nchembio.579)
Chang, J. W., Nomura, D. K. & Cravatt, B. F. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. Chem. Biol. 18, 476–484 (2011). (PMID: 21513884311934210.1016/j.chembiol.2011.02.008)
Hsu, K. L. et al. DAGLbeta inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat. Chem. Biol. 8, 999–1007 (2012). (PMID: 23103940351394510.1038/nchembio.1105)
Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014). (PMID: 2490578510.1146/annurev-biochem-060713-035708)
Otrubova, K., Chatterjee, S., Ghimire, S., Cravatt, B. F. & Boger, D. L. N-Acyl pyrazoles: effective and tunable inhibitors of serine hydrolases. Bioorg. Med. Chem. 27, 1693–1703 (2019). (PMID: 30879861647434410.1016/j.bmc.2019.03.020)
Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999). (PMID: 106112752471010.1073/pnas.96.26.14694)
Cognetta, A. B. 3rd et al. Selective N-hydroxyhydantoin carbamate inhibitors of mammalian serine hydrolases. Chem. Biol. 22, 928–937 (2015). (PMID: 26120000452752810.1016/j.chembiol.2015.05.018)
Zambetti, N. A. et al. Genetic disruption of N-RasG12D palmitoylation perturbs hematopoiesis and prevents myeloid transformation in mice. Blood 135, 1772–1782 (2020). (PMID: 32219446722568710.1182/blood.2019003530)
Charron, G. et al. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 131, 4967–4975 (2009). (PMID: 1928124410.1021/ja810122f)
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002). (PMID: 1220354610.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4)
Drisdel, R. C. & Green, W. N. Labeling and quantifying sites of protein palmitoylation. Biotechniques 36, 276–285 (2004). (PMID: 1498909210.2144/04362RR02)
Zecha, J. et al. Peptide level turnover measurements enable the study of proteoform dynamics. Mol. Cell. Proteomics 17, 974–992 (2018). (PMID: 29414762593040810.1074/mcp.RA118.000583)
Chen, B. et al. ZDHHC7-mediated S-palmitoylation of scribble regulates cell polarity. Nat. Chem. Biol. 12, 686–693 (2016). (PMID: 27380321499049610.1038/nchembio.2119)
Kamijo, A., Saitoh, Y., Ohno, N., Ohno, S. & Terada, N. Immunohistochemical study of the membrane skeletal protein, membrane protein palmitoylated 6 (MPP6), in the mouse small intestine. Histochem. Cell Biol. 145, 81–92 (2016). (PMID: 2649692310.1007/s00418-015-1374-7)
Jones, T. L. & Gutkind, J. S. Galpha12 requires acylation for its transforming activity. Biochemistry 37, 3196–3202 (1998). (PMID: 948547410.1021/bi972253j)
Saraceno, C. et al. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation. Cell Death Dis. 5, e1547 (2014). (PMID: 25429624426075010.1038/cddis.2014.492)
Choi, S. I., Vidal, R., Frangione, B. & Levy, E. Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB J. 18, 373–375 (2004). (PMID: 1465699110.1096/fj.03-0730fje)
Xu, J. et al. Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras. Blood 119, 1032–1035 (2012). (PMID: 22144181327171510.1182/blood-2011-06-358960)
Zhao, W. et al. A new bliss independence model to analyze drug combination data. J. Biomol. Screen. 19, 817–821 (2014). (PMID: 2449292110.1177/1087057114521867)
Ahearn, I. M., Haigis, K., Bar-Sagi, D. & Philips, M. R. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol. 13, 39–51 (2011). (PMID: 2218942410.1038/nrm3255)
Ryan, M. B. & Corcoran, R. B. Therapeutic strategies to target RAS-mutant cancers. Nat. Rev. Clin. Oncol. 15, 709–720 (2018). (PMID: 3027551510.1038/s41571-018-0105-0)
Cox, A. D., Der, C. J. & Philips, M. R. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin. Cancer Res. 21, 1819–1827 (2015). (PMID: 25878363440083710.1158/1078-0432.CCR-14-3214)
Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014). (PMID: 25323927435501710.1038/nrd4389)
Hernandez, J. L. et al. APT2 inhibition restores scribble localization and S-palmitoylation in Snail-transformed cells. Cell Chem. Biol. 24, 87–97 (2017). (PMID: 28065656536212310.1016/j.chembiol.2016.12.007)
Vartak, N. et al. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys. J. 106, 93–105 (2014). (PMID: 24411241390723210.1016/j.bpj.2013.11.024)
Kathayat, R. S. et al. Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat. Commun. 9, 334 (2018). (PMID: 29362370578039510.1038/s41467-017-02655-1)
Levental, I., Lingwood, D., Grzybek, M., Coskun, U. & Simons, K. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl Acad. Sci. USA 107, 22050–22054 (2010). (PMID: 21131568300982510.1073/pnas.1016184107)
Chandra, A. et al. The GDI-like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol. 14, 148–158 (2011). (PMID: 2217904310.1038/ncb2394)
Zhou, M. et al. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking. J. Cell Biol. 214, 445–458 (2016). (PMID: 27502489498729710.1083/jcb.201604061)
Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999). (PMID: 1008792010.1016/S0968-0004(98)01336-X)
Patricelli, M. P., Giang, D. K., Stamp, L. M. & Burbaum, J. J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001). (PMID: 1199050010.1002/1615-9861(200109)1:9<1067::AID-PROT1067>3.0.CO;2-4)
Chang, J. W., Cognetta, A. B. 3rd, Niphakis, M. J. & Cravatt, B. F. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition. ACS Chem. Biol. 8, 1590–1599 (2013). (PMID: 23701408380689710.1021/cb400261h)
Hatfield, M. J. et al. Biochemical and molecular analysis of carboxylesterase-mediated hydrolysis of cocaine and heroin. Br. J. Pharmacol. 160, 1916–1928 (2010). (PMID: 20649590295863810.1111/j.1476-5381.2010.00700.x)
Inloes, J. M. et al. The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase. Proc. Natl Acad. Sci. USA 111, 14924–14929 (2014). (PMID: 25267624420562710.1073/pnas.1413706111)
Xu, T. et al. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteomics 129, 16–24 (2015). (PMID: 26171723463012510.1016/j.jprot.2015.07.001)
Cociorva, D., Tabb, D. L. & Yates, J. R. Validation of tandem mass spectrometry database search results using DTASelect.Curr. Protoc. Bioinformatics Chapter 13, Unit 13.4 (2007). (PMID: 18428785)
Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628–1640 (2011). (PMID: 21828272318202610.1101/gad.17269211)
Burgess, M. R. et al. Preclinical efficacy of MEK inhibition in Nras-mutant AML. Blood 124, 3947–3955 (2014). (PMID: 25361812427118010.1182/blood-2014-05-574582)
Wang, Y. et al. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat. Chem. 11, 1113–1123 (2019). (PMID: 31659311687489810.1038/s41557-019-0351-5)
Vinogradova, E. V. et al. An activity-guided map of electrophile–cysteine interactions in primary human T cells. Cell 182, 1009–1026 e29 (2020). (PMID: 32730809777562210.1016/j.cell.2020.07.001)
Adler, J. & Parmryd, I. Quantifying colocalization by correlation: the pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry A 77, 733–742 (2010). (PMID: 2065301310.1002/cyto.a.20896)
معلومات مُعتمدة: R01 CA238249 United States CA NCI NIH HHS; K08 CA256489 United States CA NCI NIH HHS; R01 NS073831 United States NS NINDS NIH HHS; R01 CA193994 United States CA NCI NIH HHS; R35 CA231991 United States CA NCI NIH HHS; R37 CA072614 United States CA NCI NIH HHS; R01 CA072614 United States CA NCI NIH HHS
المشرفين على المادة: EC 3.- (ABHD17B protein, human)
EC 3.- (Hydrolases)
EC 3.6.5.2 (ras Proteins)
تواريخ الأحداث: Date Created: 20210430 Date Completed: 20210907 Latest Revision: 20240608
رمز التحديث: 20240608
مُعرف محوري في PubMed: PMC8900659
DOI: 10.1038/s41589-021-00785-8
PMID: 33927411
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4469
DOI:10.1038/s41589-021-00785-8