دورية أكاديمية

The Emerging Role of Viability Testing During Liver Machine Perfusion.

التفاصيل البيبلوغرافية
العنوان: The Emerging Role of Viability Testing During Liver Machine Perfusion.
المؤلفون: Brüggenwirth IMA; Department of SurgerySection of Hepato-Pancreato-Biliary Surgery and Liver Transplantation University Medical Center GroningenUniversity of Groningen Groningen the Netherlands Division of Organ TransplantationDepartment of Surgery UMass Memorial Medical CenterUniversity of Massachusetts Worcester MA., van Leeuwen OB, Porte RJ, Martins PN
المصدر: Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society [Liver Transpl] 2022 May; Vol. 28 (5), pp. 876-886. Date of Electronic Publication: 2021 Jun 24.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wolters Kluwer Health, Inc Country of Publication: United States NLM ID: 100909185 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1527-6473 (Electronic) Linking ISSN: 15276465 NLM ISO Abbreviation: Liver Transpl Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : [Philadelphia] : Wolters Kluwer Health, Inc.
Original Publication: Philadelphia, PA : W.B. Saunders Co., c2000-
مواضيع طبية MeSH: Liver Transplantation*/adverse effects , Organ Preservation*/adverse effects, Humans ; Liver/metabolism ; Liver/surgery ; Perfusion/adverse effects ; Tissue Donors
مستخلص: The transplant community continues to be challenged by the disparity between the need for liver transplantation and the shortage of suitable donor organs. At the same time, the number of unused donor livers continues to increase, most likely attributed to the worsening quality of these organs. To date, there is no reliable marker of liver graft viability that can predict good posttransplant outcomes. Ex situ machine perfusion offers additional data to assess the viability of donor livers before transplantation. Hence, livers initially considered unsuitable for transplantation can be assessed during machine perfusion in terms of appearance and consistency, hemodynamics, and metabolic and excretory function. In addition, postoperative complications such as primary nonfunction or posttransplant cholangiopathy may be predicted and avoided. A variety of viability criteria have been used in machine perfusion, and to date there is no widely accepted composition of criteria for clinical use. This review discusses potential viability markers for hepatobiliary function during machine perfusion, describes current limitations, and provides future recommendations for the use of viability criteria in clinical liver transplantation.
(Copyright © 2021 by the American Association for the Study of Liver Diseases.)
التعليقات: Comment in: Liver Transpl. 2022 May;28(5):751-753. (PMID: 35092160)
References: Bodzin AS, Baker TB. Liver transplantation today: where we are now and where we are going. Liver Transpl 2018;24:1470–1475.
Orman ES, Mayorga ME, Wheeler SB, Townsley RM, Toro‐Diaz HH, Hayashi PH, Sidney Barritt A. Declining liver graft quality threatens the future of liver transplantation in the United States. Liver Transpl 2015;21:1040–1050.
de Meijer VE, Fujiyoshi M, Porte RJ. Ex situ machine perfusion strategies in liver transplantation. J Hepatol 2019;70:203–205.
Watson CJE, Jochmans I. From, “gut feeling” to objectivity: machine preservation of the liver as a tool to assess organ viability. Curr Transplant Rep 2018;5:72–81.
Belzer FO, Southard JH. Principles of solid‐organ preservation by cold storage. Transplantation 1988;45:673–676. http://www.ncbi.nlm.nih.gov/pubmed/3282347 . Accessed March 2, 2016.
Ham JM, Furneaux RW, Jones M, Rose R. Formazan production: test for tissue viability prior to transplantation. Transplantation 1969;8:199–200.
Marubayashi S, Takenaka M, Dohi K, Ezaki H, Kawasaki T. Adenine nucleotide metabolism during hepatic ischemia and subsequent blood reflow periods and its relation to organ viability. Transplantation 1980;30:294–296.
Kamiike W, Burdelski M, Steinhoff G, Ringe B, Lauchart W, Pichlmayr R. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. Transplantation 1988;45:138–143.
Sumimoto K, Inagaki K, Yamada K, Kawasaki T, Dohi K. Reliable indices for the determination of viability of grafted liver immediately after orthotopic transplantation. Bile flow rate and cellular adenosine triphosphate level. Transplantation 1988;46:506–509.
Hamamoto I, Nemoto EM, Zhang S, Hartwell VR, Todo S. Assessment of hepatic viability during cold ischemic preservation. Transpl Int 1995;8:434–439.
Kanetsuna Y, Fujita S, Tojimbara T, Fuchinoue S, Teraoka S, Ota K. Usefulness of 31P‐MRS as a method of evaluating the viability of preserved and transplanted rat liver. Transpl Int 1992;5(suppl 1):S379–S381.
Bowers JL, Kawano K, Metz KR, Teramoto K, McCullough A, Clouse ME. 31P NMR assessment of orthotopic liver rejection in a rat model. Magn Reson Med 1994;32:164–169.
Brüggenwirth IMA, de Meijer VE, Porte RJ, Martins PN. Viability criteria assessment during liver machine perfusion. Nat Biotechnol 2020;38:1260–1262.
Eshmuminov D, Becker D, Bautista Borrego L, Hefti M, Schuler MJ, Hagedorn C, et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat Biotechnol 2020;38:189–198.
Brüggenwirth I, Porte R, Martins P. Bile composition as a diagnostic and prognostic tool in liver transplantation. Liver Transpl 2020;26:1177–1187.
Tapia P, Soto D, Bruhn A, Alegría L, Jarufe N, Luengo C, et al. Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion. Crit Care 2015;19:1–10.
Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CDL, et al. A randomized trial of normothermic preservation in liver transplantation. Nature 2018;557:50–56.
Mergental H, Perera M, Laing R, Muiesan P, Isaac JR, Smith A, et al. Transplantation of declined liver allografts following normothermic ex‐situ evaluation. Am J Transplant 2016;16:3235–3245.
Mergental H, Stephenson BTF, Laing RW, Kirkham AJ, Neil DAH, Wallace LL, et al. Development of clinical criteria for functional assessment to predict primary nonfunction of high‐risk livers using normothermic machine perfusion. Liver Transpl 2018;24:1453–1469.
Pavel M‐C, Reyner E, Molina V, Garcia R, Ruiz A, Roque R, et al. Evolution under normothermic machine perfusion of type 2 donation after cardiac death livers discarded as nontransplantable. J Surg Res 2019;235:383–394.
Vries Y, Matton APM, Nijsten MWN, Werner MJM, Berg AP, Boer MT, et al. Pretransplant sequential hypo‐ and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin‐based oxygen carrier perfusion solution. Am J Transplant 2019;19:1202–1211.
van Leeuwen OB, de Vries Y, Fujiyoshi M, Nijsten MWN, Ubbink R, Pelgrim GJ, et al. Transplantation of high‐risk donor livers after ex situ resuscitation and assessment using combined hypo‐ and normothermic machine perfusion: a prospective clinical trial. Ann Surg 2019;270:906–914.
Watson CJE, Kosmoliaptsis V, Randle LV, Gimson AE, Brais R, Klinck JR, et al. Normothermic perfusion in the assessment and preservation of declined livers before transplantation: hyperoxia and vasoplegia‐important lessons from the first 12 cases. Transplantation 2017;101:1084–1098.
Zhang Z, Ju W, Tang Y, Wang L, Zhu C, Gao N, et al. First preliminary experience with preservation of liver grafts from extended‐criteria donors by normothermic machine perfusion in Asia. Ann Transplant 2020;25:e921529.
Bral M, Dajani K, Leon Izquierdo D, Bigam D, Kneteman N, Ceresa CDL, et al. A back‐to‐base experience of human normothermic ex situ liver perfusion: does the chill kill? Liver Transpl 2019;25:848–858.
Cardini B, Oberhuber R, Fodor M, Hautz T, Margreiter C, Resch T, et al. Clinical implementation of prolonged liver preservation and monitoring through normothermic machine perfusion in liver transplantation. Transplantation 2020;104:1917–1928.
Watson CJE, Kosmoliaptsis V, Pley C, Randle L, Fear C, Crick K, et al. Observations on the ex situ perfusion of livers for transplantation. Am J Transplant 2018;18:2005–2020.
Mergental H, Laing RW, Kirkham AJ, Perera MTPR, Boteon YL, Attard J, et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat Commun 2020;11:2939.
Boyer JL. Bile formation and secretion. Compr Physiol 2013;3:1035–1078.
van Leeuwen OB, de Meijer VE, Porte RJ. Viability criteria for functional assessment of donor livers during normothermic machine perfusion. Liver Transpl 2018;24:1333–1335.
Hide D, Ortega‐Ribera M, Garcia‐Pagan J‐C, Peralta C, Bosch J, Gracia‐Sancho J. Effects of warm ischemia and reperfusion on the liver microcirculatory phenotype of rats: underlying mechanisms and pharmacological therapy. Sci Rep 2016;6:22107.
Fukumori T, Ohkohchi N, Tsukamoto S, Satomi S. Why is fatty liver unsuitable for transplantation? Deterioration of mitochondrial ATP synthesis and sinusoidal structure during cold preservation of a liver with steatosis. Transplant Proc 1997;29:412–415.
Monbaliu D, Liu Q, Libbrecht L, De Vos R, Vekemans K, Debbaut C, et al. Preserving the morphology and evaluating the quality of liver grafts by hypothermic machine perfusion: a proof‐of‐concept study using discarded human livers. Liver Transpl 2012;18:1495–1507.
Han HS, Kang G, Kim JS, Choi BH, Koo SH. Regulation of glucose metabolism from a liver‐centric perspective. Exp Mol Med 2016;48:1–10.
Gillispie A, Rooyackers O, Wernerman J, Nowak G. Effect of extended cold ischemia time on glucose metabolism in liver grafts: experimental study in pigs. J Hepatobiliary Pancreat Surg 2007;14:183–188.
Häussinger D. Liver regulation of acid‐base balance. Miner Electrolyte Metab 1997;23:249–252. http://www.ncbi.nlm.nih.gov/pubmed/9387127 . Accessed June 9, 2020.
Reiling J, Lockwood DSR, Simpson AH, Campbell CM, Bridle KR, Santrampurwala N, et al. Urea production during normothermic machine perfusion: price of success? Liver Transpl 2015;21:700–703.
Izamis M‐L, Tolboom H, Uygun B, Berthiaume F, Yarmush ML, Uygun K. Resuscitation of ischemic donor livers with normothermic machine perfusion: a metabolic flux analysis of treatment in rats. PLoS One 2013;8:e69758.
Karangwa SA, Adelmeijer J, Matton APM, de Meijer VE, Lisman T, Porte RJ. Production of physiologically relevant quantities of hemostatic proteins during ex situ normothermic machine perfusion of human livers. Liver Transpl 2018;24:1298–1302.
Banan B, Watson R, Xu M, Lin Y, Chapman W. Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers. Liver Transpl 2016;22:979–993.
Karangwa SA, Burlage LC, Adelmeijer J, Karimian N, Westerkamp AC, Matton AP, et al. Activation of fibrinolysis, but not coagulation, during end‐ischemic ex situ normothermic machine perfusion of human donor livers. Transplantation 2017;101:e42–e48.
Martins PN, Rizzari MD, Ghinolfi D, Jochmans I, Attia M, Jalan R, et al. Design, analysis, and pitfalls in clinical trials using ex‐situ liver machine perfusion: the International Liver Transplantation Society (ILTS) consensus guidelines. Transplantation 2021;105:796–815.
Dutkowski P, Guarrera JV, de Jonge J, Martins PN, Porte RJ, Clavien P‐A. Evolving trends in machine perfusion for liver transplantation. Gastroenterology 2019;156:1542–1547.
Bral M, Aboelnazar N, Hatami S, Thiesen A, Bigam DL, Freed DH, et al. Clearance of transaminases during normothermic ex situ liver perfusion. PLoS ONE 2019;14:e0215619.
de Vries Y, von Meijenfeldt FA, Porte RJ. Post‐transplant cholangiopathy: classification, pathogenesis, and preventive strategies. Biochim Biophys Acta ‐ Mol Basis Dis 2018;1864:1507–1515.
Beijert I, Mert S, Huang V, Karimian N, Geerts S, Hafiz EO, et al. Endothelial dysfunction in steatotic human donor livers: a pilot study of the underlying mechanism during subnormothermic machine perfusion. Transplant Direct 2018;4:e345.
Bruinsma BG, Yeh H, Özer S, Martins PN, Farmer A, Wu W, et al. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant 2014;14:1400–1409.
Bruinsma BG, Sridharan GV, Weeder PD, Avruch JH, Saeidi N, Özer S, et al. Metabolic profiling during ex vivo machine perfusion of the human liver. Sci Rep 2016;6:22415.
Ciria R, Ayllon‐Teran MD, Gonzalez‐Rubio S, Gomez‐Luque I, Ferrin G, Moreno A, et al. Rescue of discarded grafts for liver transplantation by ex vivo subnormothermic and normothermic oxygenated machine perfusion: first experience in Spain. Transplant Proc 2019;51:20–24.
Patrono D, Surra A, Catalano G, Rizza G, Berchialla P, Martini S, et al. Hypothermic oxygenated machine perfusion of liver grafts from brain‐dead donors. Sci Rep 2019;9:9337.
Tewes S, Gueler F, Chen R, Gutberlet M, Jang M‐S, Meier M, et al. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains. PLoS One 2017;12:e0173248.
Guarrera JV, Henry SD, Samstein B, Odeh‐Ramadan R, Kinkhabwala M, Goldstein MJ, et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant 2010;10:372–381.
Rayar M, Beaurepaire J‐M, Bajeux E, Hamonic S, Renard T, Locher C, et al. Hypothermic oxygenated perfusion (HOPE) improves ECD liver graft function and reduces duration of hospitalisation without extra cost: the PERPHO study. Liver Transpl 2021;27:349–362.
Patrono D, Catalano G, Rizza G, Lavorato N, Berchialla P, Gambella A, et al. Perfusate analysis during dual hypothermic oxygenated machine perfusion of liver grafts: correlations with donor factors and early outcomes. Transplantation 2020;104:1929–1942.
Muller X, Schlegel A, Kron P, Eshmuminov D, Würdinger M, Meierhofer D, et al. Novel real‐time prediction of liver graft function during hypothermic oxygenated machine perfusion before liver transplantation. Ann Surg 2019;270:783–790.
Wang LU, Thompson E, Bates L, Pither TL, Hosgood SA, Nicholson ML, et al. Flavin mononucleotide as a biomarker of organ quality—a pilot study. Transplant Direct 2020;6:e600.
Boteon YL, Laing RW, Schlegel A, Wallace L, Smith A, Attard J, et al. The impact on the bioenergetic status and oxidative‐mediated tissue injury of a combined protocol of hypothermic and normothermic machine perfusion using an acellular haemoglobin‐based oxygen carrier: the cold‐to‐warm machine perfusion of the liver. PLoS One 2019;14:e0224066.
Giretti G, Barbier L, Bucur P, Marques F, Perarnau J‐M, Ferrandière M, et al. Recipient selection for optimal utilization of discarded grafts in liver transplantation. Transplantation 2018;102:775–782.
McCormack L, Quiñonez E, Ríos MM, Capitanich P, Goldaracena N, Cabo JK, et al. Rescue policy for discarded liver grafts: a single‐centre experience of transplanting livers 'that nobody wants'. HPB 2010;12:523–530.
تواريخ الأحداث: Date Created: 20210508 Date Completed: 20220420 Latest Revision: 20230509
رمز التحديث: 20230509
DOI: 10.1002/lt.26092
PMID: 33963657
قاعدة البيانات: MEDLINE
الوصف
تدمد:1527-6473
DOI:10.1002/lt.26092