دورية أكاديمية

CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory.

التفاصيل البيبلوغرافية
العنوان: CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory.
المؤلفون: Lelliott EJ; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia., Kong IY; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia., Zethoven M; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia., Ramsbottom KM; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia., Martelotto LG; Single Cell Innovation Laboratory, The University of Melbourne, Parkville, Victoria, Australia., Meyran D; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Université de Paris, INSERM, U976 HIPI Unit, Institut de Recherche Saint-Louis, Paris, France., Zhu JJ; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia., Costacurta M; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia., Kirby L; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia., Sandow JJ; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia., Lim L; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia., Dominguez PM; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia., Todorovski I; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia., Haynes NM; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia., Beavis PA; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia., Neeson PJ; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia., Hawkins ED; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia., McArthur GA; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia., Parish IA; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia., Johnstone RW; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia., Oliaro J; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.; Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia., Sheppard KE; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. conor.kearney@petermac.org karen.sheppard@petermac.org stephin.vervoort@petermac.org.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia., Kearney CJ; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. conor.kearney@petermac.org karen.sheppard@petermac.org stephin.vervoort@petermac.org.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia., Vervoort SJ; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. conor.kearney@petermac.org karen.sheppard@petermac.org stephin.vervoort@petermac.org.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
المصدر: Cancer discovery [Cancer Discov] 2021 Oct; Vol. 11 (10), pp. 2582-2601. Date of Electronic Publication: 2021 May 14.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Association for Cancer Research Country of Publication: United States NLM ID: 101561693 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2159-8290 (Electronic) Linking ISSN: 21598274 NLM ISO Abbreviation: Cancer Discov Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Philadelphia, PA : American Association for Cancer Research
مواضيع طبية MeSH: Antineoplastic Agents/*therapeutic use , Breast Neoplasms/*drug therapy , Piperazines/*therapeutic use , Protein Kinase Inhibitors/*therapeutic use , Pyridines/*therapeutic use, Animals ; Antineoplastic Agents/pharmacology ; Breast Neoplasms/pathology ; Cell Line, Tumor ; Cyclin-Dependent Kinase 4/antagonists & inhibitors ; Cyclin-Dependent Kinase 6/antagonists & inhibitors ; Female ; Humans ; Memory T Cells/drug effects ; Mice ; Piperazines/pharmacology ; Protein Kinase Inhibitors/pharmacology ; Pyridines/pharmacology ; Xenograft Model Antitumor Assays
مستخلص: Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are an approved treatment for hormone receptor-positive breast cancer and are currently under evaluation across hundreds of clinical trials for other cancer types. The clinical success of these inhibitors is largely attributed to well-defined tumor-intrinsic cytostatic mechanisms, whereas their emerging role as immunomodulatory agents is less understood. Using integrated epigenomic, transcriptomic, and proteomic analyses, we demonstrated a novel action of CDK4/6 inhibitors in promoting the phenotypic and functional acquisition of immunologic T-cell memory. Short-term priming with a CDK4/6 inhibitor promoted long-term endogenous antitumor T-cell immunity in mice, enhanced the persistence and therapeutic efficacy of chimeric antigen receptor T cells, and induced a retinoblastoma-dependent T-cell phenotype supportive of favorable responses to immune checkpoint blockade in patients with melanoma. Together, these mechanistic insights significantly broaden the prospective utility of CDK4/6 inhibitors as clinical tools to boost antitumor T-cell immunity. SIGNIFICANCE: Immunologic memory is critical for sustained antitumor immunity. Our discovery that CDK4/6 inhibitors drive T-cell memory fate commitment sheds new light on their clinical activity, which is essential for the design of clinical trial protocols incorporating these agents, particularly in combination with immunotherapy, for the treatment of cancer. This article is highlighted in the In This Issue feature, p. 2355 .
(©2021 American Association for Cancer Research.)
References: Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
Garcia-Bates TM, Kim E, Concha-Benavente F, Trivedi S, Mailliard RB, Gambotto A, et al. Enhanced cytotoxic CD8 T cell priming using dendritic cell-expressing human papillomavirus-16 E6/E7-p16INK4 fusion protein with sequenced anti-programmed death-1. J Immunol. 2016;196:2870–8.
Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6:353–67.
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471–5.
Jin X, Ding D, Yan Y, Li H, Wang B, Ma L, et al. Phosphorylated RB promotes cancer immunity by inhibiting NF-kappaB activation and PD-L1 expression. Mol Cell. 2019;73:22–35.
Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 2018;8:216–33.
Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91–5.
Schaer DA, Beckmann RP, Dempsey JA, Huber L, Forest A, Amaladas N, et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep. 2018;22:2978–94.
Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2019;176:404.
Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 2019;176:775–89.
Brummelman J, Mazza EMC, Alvisi G, Colombo FS, Grilli A, Mikulak J, et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8(+) T cells infiltrating human tumors. J Exp Med. 2018;215:2520–35.
Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20:326–36.
Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nat Med. 2017;23:18–27.
Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A. 2016;113:E7788–97.
Jansen CS, Prokhnevska N, Master VA, Sanda MG, Carlisle JW, Bilen MA, et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature. 2019;576:465–70.
Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50:195–211.
Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, et al. Distinct immune cell populations define response to anti–PD-1 monotherapy and anti–PD-1/anti-CTLA-4 combined therapy. Cancer Cell. 2019;35:238–55.
Garfall AL, Dancy EK, Cohen AD, Hwang WT, Fraietta JA, Davis MM, et al. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv. 2019;3:2812–5.
Blaeschke F, Stenger D, Kaeuferle T, Willier S, Lotfi R, Kaiser AD, et al. Induction of a central memory and stem cell memory phenotype in functionally active CD4(+) and CD8(+) CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19(+) acute lymphoblastic leukemia. Cancer Immunol Immunother. 2018;67:1053–66.
Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, Kuo CF, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res. 2019;7:759–72.
Chen Y, Zander R, Khatun A, Schauder DM, Cui W. Transcriptional and epigenetic regulation of effector and memory CD8 T cell differentiation. Front Immunol. 2018;9:2826.
Rodriguez RM, Suarez-Alvarez B, Lavin JL, Mosen-Ansorena D, Baragano Raneros A, Marquez-Kisinousky L, et al. Epigenetic networks regulate the transcriptional program in memory and terminally differentiated CD8+ T cells. J Immunol. 2017;198:937–49.
Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, et al. Erratum: epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation. Nat Immunol. 2017;18:705.
Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14:865–8.
Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM III, et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 2018;19:224.
Lelliott EJ, Mangiola S, Ramsbottom KM, Zethoven M, Lim L, Lau PKH, et al. Combined BRAF, MEK, and CDK4/6 inhibition depletes intratumoral immune-potentiating myeloid populations in melanoma. Cancer Immunol Res. 2021;9:136–46.
Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27:670–84.
Lelliott EJ, Cullinane C, Martin CA, Walker R, Ramsbottom KM, Souza-Fonseca-Guimaraes F, et al. A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy. Sci Rep. 2019;9:1225.
Tough DF, Rioja I, Modis LK, Prinjha RK. Epigenetic regulation of T cell memory: recalling therapeutic implications. Trends Immunol. 2020;41:29–45.
Kretschmer L, Flossdorf M, Mir J, Cho YL, Plambeck M, Treise I, et al. Differential expansion of T central memory precursor and effector subsets is regulated by division speed. Nat Commun. 2020;11:113.
Lin WW, Nish SA, Yen B, Chen YH, Adams WC, Kratchmarov R, et al. CD8(+) T lymphocyte self-renewal during effector cell determination. Cell Rep. 2016;17:1773–82.
Singh A, Jatzek A, Plisch EH, Srinivasan R, Svaren J, Suresh M. Regulation of memory CD8 T-cell differentiation by cyclin-dependent kinase inhibitor p27Kip1. Mol Cell Biol. 2010;30:5145–59.
Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12:749–61.
Martin MD, Badovinac VP. Defining memory CD8 T cell. Front Immunol. 2018;9:2692.
Plumlee CR, Sheridan BS, Cicek BB, Lefrancois L. Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity. 2013;39:347–56.
MacKay M, Afshinnekoo E, Rub J, Hassan C, Khunte M, Baskaran N, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat Biotechnol. 2020;38:233–44.
Westwood JA, Smyth MJ, Teng MW, Moeller M, Trapani JA, Scott AM, et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci U S A. 2005;102:19051–6.
Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, et al. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med. 2015;7:273ra13.
Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24:563–71.
Rugo HS, Kabos P, Beck JT, Chisamore MJ, Hossain A, Chen Y, et al. A phase Ib study of abemaciclib in combination with pembrolizumab for patients with hormone receptor positive (HR+), human epidermal growth factor receptor 2 negative (HER2-) locally advanced or metastatic breast cancer (MBC) (NCT02779751): interim results. J Clin Oncol. 2020;38.
Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 2019;25:1251–9.
Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993;7:331–42.
Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998;12:2245–62.
Tan AR, Wright GS, Thummala AR, Danso MA, Popovic L, Pluard TJ, et al. Trilaciclib plus chemotherapy versus chemotherapy alone in patients with metastatic triple-negative breast cancer: a multicentre, randomised, open-label, phase 2 trial. Lancet Oncol. 2019;20:1587–601.
Lai AY, Sorrentino JA, Dragnev KH, Weiss JM, Owonikoko TK, Rytlewski JA, et al. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy. J Immunother Cancer. 2020;8:e000847.
Roberts PJL, Lai AY, Sorrentino JA, Malik RK. Trilaciclib (G1T28), a CDK4/6 inhibitor, enhances the efficacy of combination chemotherapy and immune checkpoint inhibitor treatment in preclinical models. Ann Oncol. 2018;29.
Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat Protoc. 2007;2:2057–67.
Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281–91.
Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–902.
Power BE, Caine JM, Burns JE, Shapira DR, Hattarki MK, Tahtis K, et al. Construction, expression and characterisation of a single-chain diabody derived from a humanised anti-Lewis Y cancer targeting antibody using a heat-inducible bacterial secretion vector. Cancer Immunol Immunother. 2001;50:241–50.
Scott AM, Geleick D, Rubira M, Clarke K, Nice EC, Smyth FE, et al. Construction, production, and characterization of humanized anti-Lewis Y monoclonal antibody 3S193 for targeted immunotherapy of solid tumors. Cancer Res. 2000;60:3254–61.
Norell H, Zhang Y, McCracken J, Martins da Palma T, Lesher A, Liu Y, et al. CD34-based enrichment of genetically engineered human T cells for clinical use results in dramatically enhanced tumor targeting. Cancer Immunol Immunother. 2010;59:851–62.
Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM, et al. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood. 2002;100:3155–63.
Wang LX, Westwood JA, Moeller M, Duong CP, Wei WZ, Malaterre J, et al. Tumor ablation by gene-modified T cells in the absence of autoimmunity. Cancer Res. 2010;70:9591–8.
المشرفين على المادة: 0 (Antineoplastic Agents)
0 (Piperazines)
0 (Protein Kinase Inhibitors)
0 (Pyridines)
EC 2.7.11.22 (Cyclin-Dependent Kinase 4)
EC 2.7.11.22 (Cyclin-Dependent Kinase 6)
G9ZF61LE7G (palbociclib)
تواريخ الأحداث: Date Created: 20210515 Date Completed: 20220314 Latest Revision: 20220314
رمز التحديث: 20240628
DOI: 10.1158/2159-8290.CD-20-1554
PMID: 33990344
قاعدة البيانات: MEDLINE
الوصف
تدمد:2159-8290
DOI:10.1158/2159-8290.CD-20-1554