دورية أكاديمية

Hippocampal neurogenesis promotes preference for future rewards.

التفاصيل البيبلوغرافية
العنوان: Hippocampal neurogenesis promotes preference for future rewards.
المؤلفون: Seib DR; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Espinueva DF; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Princz-Lebel O; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Chahley E; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Stevenson J; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., O'Leary TP; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Floresco SB; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Snyder JS; Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. jasonsnyder@psych.ubc.ca.
المصدر: Molecular psychiatry [Mol Psychiatry] 2021 Nov; Vol. 26 (11), pp. 6317-6335. Date of Electronic Publication: 2021 May 21.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Specialist Journals Country of Publication: England NLM ID: 9607835 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5578 (Electronic) Linking ISSN: 13594184 NLM ISO Abbreviation: Mol Psychiatry Subsets: MEDLINE
أسماء مطبوعة: Publication: 2000- : Houndmills, Basingstoke, UK : Nature Publishing Group Specialist Journals
Original Publication: Houndmills, Hampshire, UK ; New York, NY : Stockton Press, c1996-
مواضيع طبية MeSH: Dentate Gyrus*/physiology , Neurogenesis*/physiology, Animals ; Hippocampus/physiology ; Neurons/physiology ; Rats ; Reward
مستخلص: Adult hippocampal neurogenesis has been implicated in a number of disorders where reward processing is disrupted but whether new neurons regulate specific aspects of reward-related decision making remains unclear. Given the role of the hippocampus in future-oriented cognition, here we tested whether adult neurogenesis regulates preference for future, advantageous rewards in a delay discounting paradigm for rats. Indeed, blocking neurogenesis caused a profound aversion for delayed rewards, and biased choice behavior toward immediately available, but smaller, rewards. Consistent with a role for the ventral hippocampus in impulsive decision making and future-thinking, neurogenesis-deficient animals displayed reduced activity in the ventral hippocampus. In intact animals, delay-based decision making restructured dendrites and spines in adult-born neurons and specifically activated adult-born neurons in the ventral dentate gyrus, relative to dorsal activation in rats that chose between immediately-available rewards. Putative developmentally-born cells, located in the superficial granule cell layer, did not display task-specific activity. These findings identify a novel and specific role for neurogenesis in decisions about future rewards, thereby implicating newborn neurons in disorders where short-sighted gains are preferred at the expense of long-term health.
(© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Yun S, Reynolds RP, Masiulis I, Eisch AJ. Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nat Publ Group. 2016;22:1239–47.
Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126. (PMID: 23672542365374710.1186/1741-7015-11-126)
Noonan MA, Bulin SE, Fuller DC, Eisch AJ. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci. 2010;30:304–15. (PMID: 20053911284479710.1523/JNEUROSCI.4256-09.2010)
Deroche-Gamonet V, Revest J-M, Fiancette J-F, Balado E, Koehl M, Grosjean N, et al. Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior. Mol Psychiatry. 2018;229:1.
Galinato MH, Takashima Y, Fannon MJ, Quach LW, Silva RJM, Mysore KK, et al. Neurogenesis during abstinence is necessary for context-driven methamphetamine-related memory. J Neurosci. 2018;38:2011. 17–14. (PMID: 10.1523/JNEUROSCI.2011-17.2018)
Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61. (PMID: 21814201316207710.1038/nature10287)
Snyder JS, Grigereit L, Russo A, Seib DR, Brewer M, Pickel J, et al. A transgenic rat for specifically inhibiting adult neurogenesis. Eneuro. 2016;3:e0064–16. 1–13. (PMID: 10.1523/ENEURO.0064-16.2016)
Seib DRM, Corsini NS, Ellwanger K, Plaas C, Mateos A, Pitzer C, et al. Loss of dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell. 2013;12:204–14. (PMID: 2339544510.1016/j.stem.2012.11.010)
Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry. 2009;14:764. 73–739. (PMID: 1898200210.1038/mp.2008.119)
Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry. 2017;82:1–34. (PMID: 10.1016/j.biopsych.2017.05.013)
Egeland M, Guinaudie C, Preez AD, Musaelyan K, Zunszain PA, Fernandes C, et al. Depletion of adult neurogenesis using the chemotherapy drug temozolomide in mice induces behavioural and biological changes relevant to depression. Transl Psychiat. 2017;7:e1101–e1101. (PMID: 10.1038/tp.2017.68)
Karlsson R, Wang AS, Sonti AN, Cameron HA. Adult neurogenesis affects motivation to obtain weak, but not strong, reward in operant tasks. Hippocampus. 2018;28:512–22. (PMID: 29663595602120210.1002/hipo.22950)
Treadway MT, Zald DH. Parsing Anhedonia: Translational Models of Reward-Processing Deficits in Psychopathology. Curr Directions Psychological Sci. 2013;22:244–9. (PMID: 10.1177/0963721412474460)
Seib DR, Espinueva DF, Floresco SB, Snyder JS. A role for neurogenesis in probabilistic reward learning. Behav Neurosci. 2020;134:1–13. (PMID: 10.1037/bne0000370)
Bickel WK, Jarmolowicz DP, Mueller ET, Koffarnus MN, Gatchalian KM. Excessive discounting of delayed reinforcers as a trans-disease process contributing to addiction and other disease-related vulnerabilities: emerging evidence. Pharmacol Therapeutics. 2012;134:287–97. (PMID: 10.1016/j.pharmthera.2012.02.004)
Volkow ND, Baler RD. NOW vs LATER brain circuits: implications for obesity and addiction. Trends Neurosci. 2015;38:345–52. (PMID: 2595961110.1016/j.tins.2015.04.002)
Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012;35:68–77. (PMID: 2217798010.1016/j.tins.2011.11.005)
Winstanley CA, Floresco SB. Deciphering decision making: variation in animal models of effort- and uncertainty-based choice reveals distinct neural circuitries underlying core cognitive processes. J Neurosci: Off J Soc Neurosci. 2016;36:12069–79. (PMID: 10.1523/JNEUROSCI.1713-16.2016)
Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci. 2007;27:12176–89. (PMID: 17989284667326710.1523/JNEUROSCI.3761-07.2007)
Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. Nature. 2013;497:74–9. (PMID: 23594744399040810.1038/nature12112)
Sasaki T, Piatti VC, Hwaun E, Ahmadi S, Lisman JE, Leutgeb S, et al. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons. Nat Neurosci. 2018;21:258–69. (PMID: 29335604580099710.1038/s41593-017-0061-5)
Kay K, Chung JE, Sosa M, Schor JS, Karlsson MP, Larkin MC, et al. Constant sub-second cycling between representations of possible futures in the hippocampus. Cell. 2020;180:1–16. (PMID: 10.1016/j.cell.2020.01.014)
Peters J, Büchel C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron. 2010;66:138–48. (PMID: 2039973510.1016/j.neuron.2010.03.026)
Benoit RG, Gilbert SJ, Burgess PW. A neural mechanism mediating the impact of episodic prospection on farsighted decisions. J Neurosci. 2011;31:6771–9. (PMID: 21543607663284510.1523/JNEUROSCI.6559-10.2011)
Hassabis D, Kumaran D, Vann SD, Maguire EA. Patients with hippocampal amnesia cannot imagine new experiences. Proc Natl Acad Sci. 2007;104:1726–31. (PMID: 17229836177305810.1073/pnas.0610561104)
Race E, Keane MM, Verfaellie M. Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. J Neurosci. 2011;31:10262–9. (PMID: 21753003453913210.1523/JNEUROSCI.1145-11.2011)
Lebreton M, Bertoux M, Boutet C, Lehericy S, Dubois B, Fossati P, et al. A critical role for the hippocampus in the valuation of imagined outcomes. PLoS Biol. 2013;11:e1001684. (PMID: 24167442380547210.1371/journal.pbio.1001684)
Palombo DJ, Keane MM, Verfaellie M. The medial temporal lobes are critical for reward-based decision making under conditions that promote episodic future thinking. Hippocampus. 2015;25:345–53. (PMID: 2528480410.1002/hipo.22376)
Rawlins JN, Feldon J, Butt S. The effects of delaying reward on choice preference in rats with hippocampal or selective septal lesions. Behavioural Brain Res. 1985;15:191–203. (PMID: 10.1016/0166-4328(85)90174-3)
Cheung TH, Cardinal RN. Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats. BMC Neurosci. 2005;6:36. (PMID: 15892889115690410.1186/1471-2202-6-36)
Abela AR, Chudasama Y. Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision-making with a delayed or uncertain outcome. Eur J Neurosci. 2013;37:640–7. (PMID: 2319004810.1111/ejn.12071)
Yu RQ, Cooke M, Seib DR, Zhao J, Snyder JS. Adult neurogenesis promotes efficient, nonspecific search strategies in a spatial alternation water maze task. Behav Brain Res. 2019;376:112151. (PMID: 3144597810.1016/j.bbr.2019.112151)
Seib DR, Chahley E, Princz-Lebel O, Snyder JS. Intact memory for local and distal cues in male and female rats that lack adult neurogenesis. PLoS One. 2018;13:e0197869–15. (PMID: 29787617596378610.1371/journal.pone.0197869)
Parent JM, Tada E, Fike JR, Lowenstein DH. Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci. 1999;19:4508–19. (PMID: 10341251678262710.1523/JNEUROSCI.19-11-04508.1999)
van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–4. (PMID: 1187557110.1038/4151030a)
Seib D, Martin-Villalba A. In vivo neurogenesis. Bio-Protocol. 2013;3:1–8. (PMID: 10.21769/BioProtoc.841)
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676–82. (PMID: 10.1038/nmeth.2019)
Longair MH, Baker DA, Armstrong JD. Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinforma. 2011;27:2453–4. (PMID: 10.1093/bioinformatics/btr390)
Seib D, Martin-Villalba A. Neuronal morphology analysis. Bio-Protocol. 2013;3:1–7. (PMID: 10.21769/BioProtoc.842)
Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron. 2014;83:189–201. (PMID: 24991962416917210.1016/j.neuron.2014.05.018)
Schlessinger AR, Cowan WM, Gottlieb DI. An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol. 1975;159:149–75. (PMID: 111291110.1002/cne.901590202)
Ciric T, Cahill SP, Snyder JS. Dentate gyrus neurons that are born at the peak of development, but not before or after, die in adulthood. Brain Behav. 2019;9:e01435. (PMID: 31576673679029910.1002/brb3.1435)
Zeeb FD, Floresco SB, Winstanley CA. Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology. 2010;211:87–98. (PMID: 2042899910.1007/s00213-010-1871-2)
Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology. 2004;174:151–62. (PMID: 1520588610.1007/s00213-003-1761-y)
Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CEL. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage. 2010;51:1242–52. (PMID: 2033824610.1016/j.neuroimage.2010.03.040)
Jack CR, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000;55:484–90. (PMID: 1095317810.1212/WNL.55.4.484)
Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:1–22. (PMID: 10.1038/s41586-018-0262-4)
Lehmann ML, Brachman RA, Martinowich K, Schloesser RJ, Herkenham M. Glucocorticoids orchestrate divergent effects on mood through adult neurogenesis. J Neurosci. 2013;33:2961–72. (PMID: 23407954371156210.1523/JNEUROSCI.3878-12.2013)
Shafiei N, Gray M, Viau V, Floresco SB. Acute stress induces selective alterations in cost/benefit decision-making. Neuropsychopharmacol. 2012;37:2194–209. (PMID: 10.1038/npp.2012.69)
Yang G, Pan F, Gan W-B. Stably maintained dendritic spines are associated with lifelong memories. Nature 2009;462:920–4. (PMID: 19946265472480210.1038/nature08577)
Alvarez DD, Giacomini D, Yang SM, Trinchero MF, Temprana SG, Büttner KA, et al. A disynaptic feedback network activated by experience promotes the integration of new granule cells. Science. 2016;354:459–65. (PMID: 2778984010.1126/science.aaf2156)
Bergami M, Masserdotti G, Temprana SG, Motori E, Eriksson TM, Göbel J, et al. A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron. 2015;85:710–7. (PMID: 2566117910.1016/j.neuron.2015.01.001)
Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M. Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry. 2010;15:1152–63. (PMID: 20308988299018710.1038/mp.2010.34)
Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6. (PMID: 1126821410.1038/35066584)
Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus. 2002;12:578–84. (PMID: 12440573328953610.1002/hipo.10103)
Seo DO, Carillo MA, Lim SC-H, Tanaka KF, Drew MR. Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms. J Neurosci. 2015;35:11330–45. (PMID: 26269640453276110.1523/JNEUROSCI.0483-15.2015)
Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci. 2006;9:723–7. (PMID: 1673220210.1038/nn1707)
Buckner RL. The role of the hippocampus in prediction and imagination. Annu Rev Psychol 2010;61:27–48. (PMID: 1995817810.1146/annurev.psych.60.110707.163508)
Mullally SL, Maguire EA. Memory, imagination, and predicting the future. Neuroscientist. 2014;20:220–34. (PMID: 23846418423233710.1177/1073858413495091)
Addis DR, Wong AT, Schacter DL. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia. 2007;45:1363–77. (PMID: 1712637010.1016/j.neuropsychologia.2006.10.016)
Ferbinteanu J, Shapiro ML. Prospective and retrospective memory coding in the hippocampus. Neuron. 2003;40:1227–39. (PMID: 1468755510.1016/S0896-6273(03)00752-9)
Wikenheiser AM, Redish AD. Hippocampal theta sequences reflect current goals. Nat Neurosci. 2015;18:289–94. (PMID: 25559082442865910.1038/nn.3909)
Masuda A, Sano C, Zhang Q, Goto H, McHugh TJ, Fujisawa S, et al. The hippocampus encodes delay and value information during delay-discounting decision making. Elife. 2020;9:e52466. (PMID: 32077851705125710.7554/eLife.52466)
Zeidman P, Maguire EA. Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nat Rev Neurosci. 2016;17:173–82. (PMID: 26865022535875110.1038/nrn.2015.24)
Brunec IK, Bellana B, Ozubko JD, Man V, Robin J, Liu Z-X, et al. Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr Biol. 2018;28:2129–.e6. (PMID: 2993735210.1016/j.cub.2018.05.016)
Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, et al. Finite scale of spatial representation in the hippocampus. Science. 2008;321:140–3. (PMID: 1859979210.1126/science.1157086)
Eichenbaum H. Prefrontal–hippocampal interactions in episodic memory. Nat Rev Neurosci. 2017;18:547–58. (PMID: 2865588210.1038/nrn.2017.74)
Sekeres MJ, Winocur G, Moscovitch M. The hippocampus and related neocortical structures in memory transformation. Neurosci Lett. 2018;680:39–53. (PMID: 2973397410.1016/j.neulet.2018.05.006)
Sheldon S, Levine B. The role of the hippocampus in memory and mental construction. Ann NY Acad Sci. 2016;1369:76–92. (PMID: 2684928910.1111/nyas.13006)
Komorowski RW, Garcia CG, Wilson A, Hattori S, Howard MW, Eichenbaum H. Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J Neurosci. 2013;33:8079–87. (PMID: 23637197366735110.1523/JNEUROSCI.5458-12.2013)
Riaz S, Schumacher A, Sivagurunathan S, Meer MVD, Ito R. Ventral, but not dorsal, hippocampus inactivation impairs reward memory expression and retrieval in contexts defined by proximal cues. Hippocampus. 2017;27:822–36. (PMID: 2844926810.1002/hipo.22734)
Tronel S, Belnoue L, Grosjean N, Revest J-M, Piazza P-V, Koehl M, et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus. 2012;22:292–8. (PMID: 2104948310.1002/hipo.20895)
Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466–70. (PMID: 21460835308437010.1038/nature09817)
Niibori Y, Yu T-S, Epp JR, Akers KG, Josselyn SA, Frankland PW. Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat Commun. 2012;3:1253. (PMID: 2321238210.1038/ncomms2261)
Campbell KL, Madore KP, Benoit RG, Thakral PP, Schacter DL. Increased hippocampus to ventromedial prefrontal connectivity during the construction of episodic future events. Hippocampus. 2018;28:76–80. (PMID: 2911666010.1002/hipo.22812)
Abela AR, Duan Y, Chudasama Y. Hippocampal interplay with the nucleus accumbens is critical for decisions about time. Eur J Neurosci. 2015;42:2224–33. (PMID: 26121594523343810.1111/ejn.13009)
Floresco SB. The nucleus accumbens: an interface between cognition, emotion, and action. Annual Rev Psychol. 2014;66:25–52. (PMID: 2525148910.1146/annurev-psych-010213-115159)
Park EH, Burghardt NS, Dvorak D, Hen R, Fenton AA. Experience-dependent regulation of dentate gyrus excitability by adult-born granule cells. J Neurosci. 2015;35:11656–66. (PMID: 26290242454080010.1523/JNEUROSCI.0885-15.2015)
Glover LR, Schoenfeld TJ, Karlsson R-M, Bannerman DM, Cameron HA. Ongoing neurogenesis in the adult dentate gyrus mediates behavioral responses to ambiguous threat cues. PLoS Biol. 2017;15:e2001154. (PMID: 28388632538465710.1371/journal.pbio.2001154)
Drew LJ, Kheirbek MA, Luna VM, Denny CA, Cloidt MA, Wu MV, et al. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus. 2015;26:763–78. (PMID: 10.1002/hipo.22557)
Burghardt NS, Park EH, Hen R, Fenton AA. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus. 2012;22:1795–808. (PMID: 22431384478498710.1002/hipo.22013)
Luna VM, Anacker C, Burghardt NS, Khandaker H, Andreu V, Millette A, et al. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science. 2019;364:578–83. (PMID: 31073064680007110.1126/science.aat8789)
Knierim JJ, Neunuebel JP, Deshmukh SS. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Philos Trans R Soc B. 2014;369:20130369. (PMID: 10.1098/rstb.2013.0369)
Dolorfo CL, Amaral DG. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol. 1998;398:25–48. (PMID: 970302610.1002/(SICI)1096-9861(19980817)398:1<25::AID-CNE3>3.0.CO;2-B)
Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 2014;15:655–69. (PMID: 2523426410.1038/nrn3785)
Jahn HM, Bergami M. Critical periods regulating the circuit integration of adult-born hippocampal neurons. Cell Tissue Res. 2018;371:23–32. (PMID: 2882863610.1007/s00441-017-2677-x)
Ge S, Yang C-H, Hsu K-S, Ming G-L, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron. 2007;54:559–66. (PMID: 17521569204030810.1016/j.neuron.2007.05.002)
Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci. 2012;15:1700–6. (PMID: 23143513350927210.1038/nn.3260)
Dieni CV, Panichi R, Aimone JB, Kuo CT, Wadiche JI, Wadiche LO. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nat Commun. 2016;7:11313. (PMID: 27095423484300010.1038/ncomms11313)
Lemaire V, Tronel S, Montaron M-F, Fabre A, Dugast E, Abrous DN. Long-lasting plasticity of hippocampal adult-born neurons. J Neurosci. 2012;32:3101–8. (PMID: 22378883662203710.1523/JNEUROSCI.4731-11.2012)
Cole JD, Espinueva D, Seib DR, Ash AM, Cooke MB, Cahill SP, et al. Adult-born hippocampal neurons undergo extended development and are morphologically distinct from neonatally-born neurons prolonged development of adult-born neurons. J Neurosci. 2020;40:5740–56. (PMID: 32571837738096810.1523/JNEUROSCI.1665-19.2020)
Veyrac A, Gros A, Bruel-Jungerman E, Rochefort C, Borgmann FBK, Jessberger S, et al. Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning. Proc Natl Acad Sci. 2013;110:7062–7.
Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci. 2009;29:14484–95. (PMID: 19923282283090110.1523/JNEUROSCI.1768-09.2009)
Kee N, Teixeira CM, Wang AH, Frankland PW. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci. 2007;10:355–62. (PMID: 1727777310.1038/nn1847)
Sun X, Bernstein MJ, Meng M, Rao S, Sørensen AT, Yao L, et al. Functionally distinct neuronal ensembles within the memory engram. Cell 2020;181:1–32. (PMID: 10.1016/j.cell.2020.02.055)
Ohline SM, Wake KL, Hawkridge M-V, Dinnunhan MF, Hegemann RU, Wilson A, et al. Adult-born dentate granule cell excitability depends on the interaction of neuron age, ontogenetic age and experience. Brain Struct Funct. 2018;383:335.
Tronel S, Lemaire V, Charrier V, Montaron M-F, Abrous DN. Influence of ontogenetic age on the role of dentate granule neurons. Brain Struct Funct. 2015;220:645–61. (PMID: 2451028410.1007/s00429-014-0715-y)
Erwin SR, Sun W, Copeland M, Lindo S, Spruston N, Cembrowski MS. A sparse, spatially biased subtype of mature granule cell dominates recruitment in hippocampal-associated behaviors. Cell Rep. 2020;31:107551. (PMID: 3234875610.1016/j.celrep.2020.107551)
Sun D, Milibari L, Pan J-X, Ren X, Yao L-L, Zhao Y, et al. Critical roles of embryonic born dorsal dentate granule neurons for activity-dependent increases in BDNF, adult hippocampal neurogenesis, and antianxiety-like behaviors. Biol Psychiat 2021;89:600–14. (PMID: 3318376210.1016/j.biopsych.2020.08.026)
Snyder JS. Recalibrating the relevance of adult neurogenesis. Trends Neurosci. 2019;42:164–78. (PMID: 3068649010.1016/j.tins.2018.12.001)
Swan AA, Clutton JE, Chary PK, Cook SG, Liu GG, Drew MR. Characterization of the role of adult neurogenesis in touch-screen discrimination learning. Hippocampus. 2014;24:1581–91. (PMID: 25074617423625510.1002/hipo.22337)
McHugh SB, Campbell TG, Taylor AM, Rawlins JNP, Bannerman DM. A role for dorsal and ventral hippocampus in inter-temporal choice cost-benefit decision making. Behav Neurosci. 2008;122:1–8. (PMID: 18298243267184410.1037/0735-7044.122.1.1)
Petrik D, Lagace DC, Eisch AJ. The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology. 2012;62:21–34. (PMID: 2194529010.1016/j.neuropharm.2011.09.003)
Iannitelli A, Quartini A, Tirassa P, Bersani G. Schizophrenia and neurogenesis: a stem cell approach. Neurosci Biobehav Rev. 2017;80:414–42. (PMID: 2864577910.1016/j.neubiorev.2017.06.010)
Mandyam CD, Koob GF. The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery. Trends Neurosci. 2012;35:250–60. (PMID: 22265158332111910.1016/j.tins.2011.12.005)
Chambers RA. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depen. 2012;130:1–12. (PMID: 10.1016/j.drugalcdep.2012.12.005)
Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Publ Group. 2019;108:621.
Lempert KM, Steinglass JE, Pinto A, Kable JW, Simpson HB. Can delay discounting deliver on the promise of RDoC? Psychol Med. 2019;49:190–9. (PMID: 3007019110.1017/S0033291718001770)
Lempert KM, Mechanic-Hamilton DJ, Xie L, Wisse LEM, Flores R, de, Wang J, et al. Neural and behavioral correlates of episodic memory are associated with temporal discounting in older adults. Neuropsychologia. 2020;146:107549. (PMID: 32621907750247810.1016/j.neuropsychologia.2020.107549)
Heerey EA, Robinson BM, McMahon RP, Gold JM. Delay discounting in schizophrenia. Cogn Neuropsychiatry. 2007;12:213–21. (PMID: 17453902374634310.1080/13546800601005900)
Madden GJ, Petry NM, Badger GJ, Bickel WK. Impulsive and self-control choices in opioid-dependent patients and non-drug-using control participants: drug and monetary rewards. Exp Clin Psychopharm. 1997;5:256–62. (PMID: 10.1037/1064-1297.5.3.256)
Pulcu E, Trotter PD, Thomas EJ, McFarquhar M, Juhasz G, Sahakian BJ, et al. Temporal discounting in major depressive disorder. Psychological Med. 2014;44:1825–34. (PMID: 10.1017/S0033291713002584)
معلومات مُعتمدة: Canada CIHR
تواريخ الأحداث: Date Created: 20210522 Date Completed: 20220314 Latest Revision: 20230202
رمز التحديث: 20240628
DOI: 10.1038/s41380-021-01165-3
PMID: 34021262
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5578
DOI:10.1038/s41380-021-01165-3