دورية أكاديمية

Substrate Phosphorylation Rates as an In Vivo Measurement of Kinase Activity.

التفاصيل البيبلوغرافية
العنوان: Substrate Phosphorylation Rates as an In Vivo Measurement of Kinase Activity.
المؤلفون: Swaffer MP; Department of Biology, Stanford University, Stanford, CA, USA. mpswaffer@gmail.com.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2021; Vol. 2329, pp. 19-27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: CDC2 Protein Kinase/*metabolism , Protein Kinase Inhibitors/*pharmacology , Schizosaccharomyces/*growth & development , Schizosaccharomyces pombe Proteins/*metabolism, CDC2 Protein Kinase/drug effects ; CDC2 Protein Kinase/genetics ; Cell Cycle/drug effects ; Fluorescence ; Microbiological Techniques ; Mutation ; Phosphorylation/drug effects ; Schizosaccharomyces/enzymology ; Schizosaccharomyces/genetics ; Schizosaccharomyces pombe Proteins/drug effects ; Schizosaccharomyces pombe Proteins/genetics ; Substrate Specificity
مستخلص: Measuring kinase activity in different in vivo contexts is crucial for understanding the mechanism and functions of protein kinases, such as the cyclin-dependent kinases (Cdks) and other cell cycle kinases. Here, I present the rationale and the experimental framework for an alternative approach to measure kinase activity that is based on estimating substrate phosphorylation rates in vivo. The approach presented was first developed for experiments performed to measure Cdk1 activity at different stages of the fission yeast S. pombe's cell cycle [Swaffer et al., Cell 167:1750-1761, 2016]. However, it also affords a more generalizable framework that can be adaptable to other systems and kinases, as long as specific, rapid, and reversible kinase inhibition is possible. Briefly this involves transient and reversible kinase inhibition to dephosphorylate kinase substrates in vivo, followed by quantitative measurements of phosphorylation after inhibition is removed.
References: Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P (2018) Quantitative phosphoproteomics reveals the signaling dynamics of cell-cycle kinases in the fission yeast Schizosaccharomyces pombe. Cell Rep 24(2):503–514. https://doi.org/10.1016/j.celrep.2018.06.036. (PMID: 10.1016/j.celrep.2018.06.036299961096057490)
Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3. https://doi.org/10.1126/scisignal.2000475. (PMID: 10.1126/scisignal.200047520068231)
Sharma K, D'Souza RC, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8(5):1583–1594. https://doi.org/10.1016/j.celrep.2014.07.036. (PMID: 10.1016/j.celrep.2014.07.03625159151)
Carpy A, Krug K, Graf S, Koch A, Popic S, Hauf S, Macek B (2014) Absolute proteome and phosphoproteome dynamics during the cell cycle of Schizosaccharomyces pombe (Fission Yeast). Mol Cell Proteomics 13(8):1925–1936. https://doi.org/10.1074/mcp.M113.035824. (PMID: 10.1074/mcp.M113.035824247631074125727)
Coudreuse D, Nurse P (2010) Driving the cell cycle with a minimal CDK control network. Nature 468(7327):1074–1079. https://doi.org/10.1038/nature09543. (PMID: 10.1038/nature0954321179163)
Gutierrez-Escribano P, Nurse P (2015) A single cyclin-CDK complex is sufficient for both mitotic and meiotic progression in fission yeast. Nat Commun 6:6871. https://doi.org/10.1038/ncomms7871. (PMID: 10.1038/ncomms787125891897)
Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 15(4):850–860. (PMID: 10.1002/j.1460-2075.1996.tb00420.x)
Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P (2016) CDK substrate phosphorylation and ordering the cell cycle. Cell 167(7):1750–1761. e1716. https://doi.org/10.1016/j.cell.2016.11.034. (PMID: 10.1016/j.cell.2016.11.034279847255161751)
Draetta G, Beach D (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54(1):17–26. https://doi.org/10.1016/0092-8674(88)90175-4. (PMID: 10.1016/0092-8674(88)90175-43289755)
Labbe JC, Lee MG, Nurse P, Picard A, Doree M (1988) Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+. Nature 335(6187):251–254. https://doi.org/10.1038/335251a0. (PMID: 10.1038/335251a03412486)
Moreno S, Hayles J, Nurse P (1989) Regulation of p34cdc2 protein kinase during mitosis. Cell 58(2):361–372. https://doi.org/10.1016/0092-8674(89)90850-7. (PMID: 10.1016/0092-8674(89)90850-72665944)
Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18(4):533–543. https://doi.org/10.1016/j.devcel.2010.02.013. (PMID: 10.1016/j.devcel.2010.02.013204127693325599)
Gavet O, Pines J (2010) Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol 189(2):247–259. https://doi.org/10.1083/jcb.200909144. (PMID: 10.1083/jcb.200909144204041092856909)
Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T (2013) The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155(2):369–383. https://doi.org/10.1016/j.cell.2013.08.062. (PMID: 10.1016/j.cell.2013.08.062240750094001917)
Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schultz PG, Rose MD, Wood JL, Morgan DO, Shokat KM (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407(6802):395–401. https://doi.org/10.1038/35030148. (PMID: 10.1038/3503014811014197)
Aoi Y, Kawashima SA, Simanis V, Yamamoto M, Sato M (2014) Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis. Open Biol 4(7). https://doi.org/10.1098/rsob.140063.
Lopez MS, Kliegman JI, Shokat KM (2014) The logic and design of analog-sensitive kinases and their small molecule inhibitors. Methods Enzymol 548:189–213. https://doi.org/10.1016/B978-0-12-397918-6.00008-2. (PMID: 10.1016/B978-0-12-397918-6.00008-225399647)
Gregan J, Zhang C, Rumpf C, Cipak L, Li Z, Uluocak P, Nasmyth K, Shokat KM (2007) Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nat Protoc 2(11):2996–3000. https://doi.org/10.1038/nprot.2007.447. (PMID: 10.1038/nprot.2007.447180076352957860)
Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823. https://doi.org/10.1016/0076-6879(91)94059-l. (PMID: 10.1016/0076-6879(91)94059-l2005825)
Macek B, Carpy A, Koch A, Bicho CC, Borek WE, Hauf S, Sawin KE (2017) Stable isotope labeling by amino acids in cell culture (SILAC) technology in fission yeast. Cold Spring Harb Protoc 6:pdb top079814. https://doi.org/10.1101/pdb.top079814. (PMID: 10.1101/pdb.top079814)
Carpy A, Koch A, Bicho CC, Borek WE, Hauf S, Sawin KE, Macek B (2017) Stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics and phosphoproteomics in fission yeast. Cold Spring Harb Protoc 6:pdb prot091686. https://doi.org/10.1101/pdb.prot091686. (PMID: 10.1101/pdb.prot091686)
Koch A, Bicho CC, Borek WE, Carpy A, Macek B, Hauf S, Sawin KE (2017) Construction, growth, and harvesting of fission yeast stable isotope labeling by amino acids in cell culture (SILAC) strains. Cold Spring Harb Protoc 6:pdb prot091678. https://doi.org/10.1101/pdb.prot091678. (PMID: 10.1101/pdb.prot091678)
Touati SA, Hofbauer L, Jones AW, Snijders AP, Kelly G, Uhlmann F (2019) Cdc14 and PP2A phosphatases cooperate to shape phosphoproteome dynamics during mitotic exit. Cell Rep 29(7):2105–2119. e2104. https://doi.org/10.1016/j.celrep.2019.10.041. (PMID: 10.1016/j.celrep.2019.10.041317222216857435)
فهرسة مساهمة: Keywords: Cdk1; Kinase activity; Kinases; Phosphorylation
المشرفين على المادة: 0 (Protein Kinase Inhibitors)
0 (Schizosaccharomyces pombe Proteins)
EC 2.7.11.22 (CDC2 Protein Kinase)
EC 2.7.11.22 (cdc2 protein, S pombe)
تواريخ الأحداث: Date Created: 20210604 Date Completed: 20210824 Latest Revision: 20220113
رمز التحديث: 20240628
DOI: 10.1007/978-1-0716-1538-6_2
PMID: 34085212
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-1538-6_2