دورية أكاديمية

Distinct contribution of hyperbaric oxygen therapy to human neutrophil function and antibiotic efficacy against Staphylococcus aureus.

التفاصيل البيبلوغرافية
العنوان: Distinct contribution of hyperbaric oxygen therapy to human neutrophil function and antibiotic efficacy against Staphylococcus aureus.
المؤلفون: Schwartz FA; Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark., Lerche CJ; Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark., Christophersen L; Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark., Jensen PØ; Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark.; Department of Microbiology and Immunology & LEO Foundation Skin Immunology Research Center, Copenhagen University, Copenhagen, Denmark.; Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen Ø, Denmark., Laulund AS; Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark., Woetmann A; Department of Microbiology and Immunology & LEO Foundation Skin Immunology Research Center, Copenhagen University, Copenhagen, Denmark., Høiby N; Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark.; Department of Microbiology and Immunology & LEO Foundation Skin Immunology Research Center, Copenhagen University, Copenhagen, Denmark., Moser C; Department of Clinical Microbiology, Rigshospitalet, Copenhagen Ø, Denmark.
المصدر: APMIS : acta pathologica, microbiologica, et immunologica Scandinavica [APMIS] 2021 Sep; Vol. 129 (9), pp. 566-573. Date of Electronic Publication: 2021 Jul 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Munksgaard Country of Publication: Denmark NLM ID: 8803400 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-0463 (Electronic) Linking ISSN: 09034641 NLM ISO Abbreviation: APMIS Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Munksgaard
Original Publication: Copenhagen : Munksgaard, c1988-
مواضيع طبية MeSH: Hyperbaric Oxygenation*, Neutrophils/*immunology , Staphylococcus aureus/*drug effects , Staphylococcus aureus/*immunology, Anti-Bacterial Agents/administration & dosage ; Ciprofloxacin/administration & dosage ; Combined Modality Therapy ; Humans ; Hyperoxia/immunology ; In Vitro Techniques ; Microbial Sensitivity Tests ; Neutrophils/metabolism ; Penicillins/administration & dosage ; Reactive Oxygen Species/metabolism ; Staphylococcal Infections/drug therapy ; Staphylococcal Infections/therapy ; Tobramycin/administration & dosage
مستخلص: Staphylococcus aureus (SA) causes superficial and severe endovascular infections. The present in vitro study investigates the anti-SA mechanisms of hyperbaric oxygen therapy (HBOT) on direct bacterial killing, antibiotic potentiation, and polymorphonuclear leukocyte (PMN) enhancement. SA was exposed to isolated human PMNs, tobramycin, ciprofloxacin, or benzylpenicillin. HBOT was used as one 90-min session. Bacterial survival was evaluated after 4 h by quantitative bacteriology. PMN functionality as reactive oxygen species (ROS) production was measured by means of dihydrorhodamine 123 analysis. We showed that HBOT exhibits significant direct anti-SA effects. HBOT increased the anti-SA effects of PMNs by 18% after PMA stimulation (p = 0.0004) and by 15% in response to SA (p = 0.36). HBOT showed an additive effect as growth reductions of 26% to sub-MICs of tobramycin (p = 0.0057), 44% to sub-MICs of ciprofloxacin (p = 0.0001), and 26% to sub-MICs of penicillin (p = 0.038). The present in vitro study provides evidence that HBOT has differential mechanisms mediating its anti-SA effects. Our observation supports the clinical possibility for adjunctive HBOT to augment the host immune response and optimize the efficacy of antibiotic treatments.
(© 2021 Scandinavian Societies for Medical Microbiology and Pathology.)
References: Fowler VG, Miro JM, Hoen B, Cabell CH, Abrutyn E, Rubinstein E, et al. Staphylococcus aureus endocarditis. JAMA 2005;293:3012-22.
Jensen PØ, Møller SA, Lerche CJ, Moser C, Bjarnsholt T, Ciofu O, et al. Improving antibiotic treatment of bacterial biofilm by hyperbaric oxygen therapy: not just hot air. Biofilm 2019;1:100008.
Moon RE. Hyperbaric Oxygen Therapy Indications, 14th ed. Undersea and Hyperbaric Medical Society, 2019: 1-13 p.
Kolpen M, Hansen CR, Bjarnsholt T, Moser C, Christensen LD, van Gennip M, et al. Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 2010;65:57-62.
Lone AG, Atci E, Renslow R, Beyenal H, Noh S, Fransson B, et al. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants. Infect Immun 2015;83:2531-41.
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004;76:760-81.
Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys 2002;397:342-4.
Van Der Veen BS, De Winther MPJ, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxidants Redox Signal 2009;11:2899-937.
Johnson D, Travis J. The oxidative inactivation of human al-proteinase inhibitor. J Biol Chem 1979;254:4022-6.
Reeves EP, Lu H, Jacobs HL, Messina CGM, Bolsover S, Gabellall G, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 2002;416:291-7.
Bornside GH. Enhancement of antibiotic activity against Staphylococcus aureus by exposure to hyperbaric oxygen. Appl Microbiol 1967;15:1020-4.
Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A Common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007;130:797-810.
Jensen P, Briales A, Brochmann RP, Wang H, Kragh KN, Kolpen M, et al. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms. Pathog Dis 2014;70:440-3.
Brochmann RP, Toft A, Ciofu O, Briales A, Kolpen M, Hempel C, et al. Bactericidal effect of colistin on planktonic Pseudomonas aeruginosa is independent of hydroxyl radical formation. Int J Antimicrob Agents 2014;43:140-7.
Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 2003;47:317-23.
Kolpen M, Mousavi N, Sams T, Bjarnsholt T, Ciofu O, Moser C, et al. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment. Int J Antimicrob Agents 2016;47:163-7.
Kolpen M, Lerche CJ, Kragh KN, Sams T, Koren K, Jensen AS, et al. Hyperbaric oxygen sensitizes anoxic Pseudomonas aeruginosa biofilm to ciprofloxacin. Antimicrob Agents Chemother 2017;61:1-9.
Gade PAV, Olsen TB, Jensen PØ, Kolpen M, Høiby N, Henneberg K-Å, et al. Modelling of ciprofloxacin killing enhanced by hyperbaric oxygen treatment in Pseudomonas aeruginosa PAO1 biofilms. PLoS One 2018;13:1-16.
Gill AL, Bell CNA. Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM 2004;97:385-95.
Lerche CJ, Christophersen LJ, Trøstrup H, Thomsen K, Jensen PØ, Hougen HP, et al. Low efficacy of tobramycin in experimental Staphylococcus aureus endocarditis. Eur J Clin Microbiol Infect Dis 2015;34:2349-57.
Lerche CJ, Christophersen LJ, Kolpen M, Nielsen PR, Trøstrup H, Thomsen K, et al. Hyperbaric oxygen therapy augments tobramycin efficacy in experimental Staphylococcus aureus endocarditis. Int J Antimicrob Agents 2017;50:406-12.
Lerche CJ, Christophersen LJ, Goetze JP, Nielsen PR, Thomsen K, Enevold C, et al. Adjunctive dabigatran therapy improves outcome of experimental left-sided Staphylococcus aureus endocarditis. PLoS One 2019;14:e0215333.
Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 2015;3:e00149.
Memar MY, Yekani M, Alizadeh N, Baghi HB. Hyperbaric oxygen therapy: antimicrobial mechanisms and clinical application for infections. Biomed Pharmacother 2019;109:440-7.
Baernthsen NF, Hansen MB, Wahl AM, Simonsen U, Hyldegaard O. Treatment with 24 h-delayed normo- and hyperbaric oxygenation in severe sepsis induced by cecal ligation and puncture in rats. J Inflamm 2017;14:1-9.
Thom SR, Lauermann MW, Hart GB. Intermittent hyperbaric oxygen therapy for reduction of mortality in experimental polymicrobial sepsis. J Infect Dis 1986;154:504-11.
Buras JA, Holt D, Orlow D, Belikoff B, Pavlides S, Reenstra WR. Hyperbaric oxygen protects from sepsis mortality via an interleukin-10-dependent mechanism. Crit Care Med 2006;34:2624-9.
Halbach JL, Prieto JM, Wang AW, Hawisher D, Cauvi DM, Reyes T, et al. Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. Am J Physiol Regul Integr Comp Physiol 2019;317:R160-9.
McAllister TA, Stark JM, Norman JN, Ross RM. Inhibitory effects of hyperbaric oxygen on bacteria and fungi. Lancet 1963;282:1040-2.
Hopkinson WI, Towers AG. Effects of hyperbaric oxygen on some common pathogenic bacteria. Lancet 1963;282:1361-3.
Ollodart R, Blair E. High-pressure oxygen as an adjunct in experimental bacteremic shock. JAMA 1965;191:736-9.
Tsuneyoshi I, Boyle WA, Kanmura Y, Fujimoto T. Hyperbaric hyperoxia suppresses growth of Staphyloccus aureus, including methicillin-resistant strains. J Anesth 2001;15:29-32.
Mader JT, Brown GL, Guckian JC, Wells CH, Reinarz JA. A mechanism for the amelioration by hyperbaric oxygen of experimental staphylococcal osteomyelitis in rabbits. J Infect Dis 1980;142:915-22.
Almzaiel AJ, Billington R, Smerdon G, Moody AJ. Effects of hyperbaric oxygen treatment on antimicrobial function and apoptosis of differentiated HL-60 (neutrophil-like) cells. Life Sci 2013;93:125-31.
Weislow OS, Pakman LM. Inhibition of Pseudomonas aeruginosa by hyperbaric oxygen: interaction with mouse peritoneal exudate cells. Infect Immun 1974;10:546-52.
Grimberg-Peters D, Büren C, Windolf J, Wahlers T, Paunel-Görgülü A. Hyperbaric oxygen reduces production of reactive oxygen species in neutrophils from polytraumatized patients yielding in the inhibition of p38 MAP kinase and downstream pathways. PLoS One 2016;11:1-14.
Buras JA, Reenstra WR. Endothelial-neutrophil interactions during ischemia and reperfusion injury: basic mechanisms of hyperbaric oxygen. Neurol Res 2007;29:127-31.
Brandis G, Cao S, Huseby DL, Hughes D. Having your cake and eating it-staphylococcus aureus small colony variants can evolve faster growth rate without losing their antibiotic resistance. Microb Cell 2017;4:275-7.
Von Eiff C, McNamara P, Becker K, Bates D, Lei XH, Ziman M, et al. Phenotype microarray profiling of Staphylococcus aureus menD and hemB mutants with the small-colony-variant phenotype. J Bacteriol 2006;188:687-93.
Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 2006;4:295-305.
Painter KL, Strange E, Parkhill J, Bamford KB, Armstrong-James D, Edwards AM. Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response. Infect Immun 2015;83:1830-44.
Hodille E, Rose W, Diep BA, Goutelle S, Lina G, Dumitrescu O. Virulence in Staphylococcus aureus. Clin Microbiol Infect 2017;30:887-917.
Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 2014;12:465-78.
Wang H, Tompkins L. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 2008;9:598-610.
Gupta S, Laskar N, Kadouri DE. Evaluating the effect of oxygen concentrations on antibiotic sensitivity, growth, and biofilm formation of human pathogens. Microbiol Insights 2016;9:MBI.S40767.
Zamboni WA, Mazolewski PJ, Erdmann D, Bergman BA, Hussman J, Cooper MD, et al. Evaluation of penicillin and hyperbaric oxygen in the treatment of streptococcal myositis. Ann Plast Surg 1997;39:131-6.
Öztas E, Kilic A, Özyurt M, Korkmaz A, Basustaoglu A. Effect of hyperbaric oxygen and penicillin in a murine model of streptococcal myositis. Undersea Hyperb Med Soc 2001;28:181-6.
Shin PK, Pawar P, Konstantopoulos K, Ross JM. Characteristics of new Staphylococcus aureus-RBC adhesion mechanism independent of fibrinogen and IgG under hydrodynamic shear conditions. Am J Physiol - Cell Physiol 2005;289:727-34.
Risley AL, Loughman A, Cywes-Bentley C, Foster TJ, Lee JC. Capsular polysaccharide masks clumping factor a-mediated adherence of staphylococcus aureus to fibrinogen and platelets. J Infect Dis 2007;196:919-27.
Bjarnsholt T, Østrup Jensen P, Alhede M. Revival of Krebs-Ringer balanced salt solution for investigation of polymorphonuclear leukocytes and Pseudomonas aeruginosa biofilm interaction. Pathog Dis 2019;77(5):1-12.
معلومات مُعتمدة: NNF17OC0025074 Novo Nordisk Fonden; 19-L-0283 A.P. Møller Fonden
فهرسة مساهمة: Keywords: Infection; host response; hyperbaric oxygen therapy; neutrophils; oxidative stress
المشرفين على المادة: 0 (Anti-Bacterial Agents)
0 (Penicillins)
0 (Reactive Oxygen Species)
5E8K9I0O4U (Ciprofloxacin)
VZ8RRZ51VK (Tobramycin)
تواريخ الأحداث: Date Created: 20210613 Date Completed: 20210812 Latest Revision: 20210812
رمز التحديث: 20221213
DOI: 10.1111/apm.13164
PMID: 34120378
قاعدة البيانات: MEDLINE
الوصف
تدمد:1600-0463
DOI:10.1111/apm.13164