دورية أكاديمية

A methyl esterase 1 (PvMES1) promotes the salicylic acid pathway and enhances Fusarium wilt resistance in common beans.

التفاصيل البيبلوغرافية
العنوان: A methyl esterase 1 (PvMES1) promotes the salicylic acid pathway and enhances Fusarium wilt resistance in common beans.
المؤلفون: Xue R; Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, LN, China. xuerf82@hotmail.com., Feng M; Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, LN, China., Chen J; Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, LN, China., Ge W; Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, LN, China., Blair MW; Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, 37209, USA.
المصدر: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2021 Aug; Vol. 134 (8), pp. 2379-2398. Date of Electronic Publication: 2021 Jun 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 0145600 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2242 (Electronic) Linking ISSN: 00405752 NLM ISO Abbreviation: Theor Appl Genet Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer
مواضيع طبية MeSH: Disease Resistance/*immunology , Fusarium/*physiology , Oxidoreductases, O-Demethylating/*metabolism , Phaseolus/*immunology , Plant Diseases/*immunology , Plant Proteins/*metabolism , Salicylic Acid/*metabolism, Disease Resistance/genetics ; Gene Expression Regulation, Plant ; Oxidoreductases, O-Demethylating/genetics ; Phaseolus/genetics ; Phaseolus/growth & development ; Phaseolus/microbiology ; Plant Diseases/genetics ; Plant Diseases/microbiology ; Plant Proteins/genetics ; Signal Transduction
مستخلص: Key Message: Methyl esterase (MES), PvMES1, contributes to the defense response toward Fusarium wilt in common beans by regulating the salicylic acid (SA) mediated signaling pathway from phenylpropanoid synthesis and sugar metabolism as well as others. Common bean (Phaseolus vulgaris L.) is an important food legume. Fusarium wilt caused by Fusarium oxysporum f. sp. phaseoli is one of the most serious soil-borne diseases of common bean found throughout the world and affects the yield and quality of the crop. Few sources of Fusarium wilt resistance exist in legumes and most are of quantitative inheritance. In this study, we have identified a methyl esterase (MES), PvMES1, that contributes to plant defense response by regulating the salicylic acid (SA) mediated signaling pathway in response to Fusarium wilt in common beans. The result showed the role of PvMES1 in regulating SA levels in common bean and thus the SA signaling pathway and defense response mechanism in the plant. Overexpression of the PvMES1 gene enhanced Fusarium wilt resistance; while silencing of the gene caused susceptibility to the diseases. RNA-seq analysis with these transiently modified plants showed that genes related to SA level changes included the following gene ontologies: (a) phenylpropanoid synthesis; (b) sugar metabolism; and (c) interaction between host and pathogen as well as others. These key signal elements activated the defense response pathway in common bean to Fusarium wilt. Collectively, our findings indicate that PvMES1 plays a pivotal role in regulating SA biosynthesis and signaling, and increasing Fusarium wilt resistance in common bean, thus providing novel insight into the practical applications of both SA and MES genes and pathways they contribute to for developing elite crop varieties with enhanced broad-spectrum resistance to this critical disease.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Albrecht U, Bowman KD (2008) Gene expression in Citrus sinensis (L) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Sci 175(3):291–306. (PMID: 10.1016/j.plantsci.2008.05.001)
Alessandra L, Luca P, Adriano M (2010) Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. J Plant Physiol 167:1398–1406. (PMID: 2065054510.1016/j.jplph.2010.05.015)
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. (PMID: 2231712223171210.1016/S0022-2836(05)80360-2)
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. (PMID: 20979621321866210.1186/gb-2010-11-10-r106)
Andersen QM, Markham KR (2006) Flavonoids. Chemistry, biochemistry and applications. CRC Press/Taylor & Francis Group/LLC CRC Press. Boca Raton/London/New York.
Antoniw JF, White RF (1980) The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. J Phytopathol 98(4):331–341. (PMID: 10.1111/j.1439-0434.1980.tb03748.x)
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang HZ, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LSL (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119. (PMID: 1468137230886510.1093/nar/gkh131)
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. (PMID: 10802651303741910.1038/75556)
Assis JS, Maldonado R, Muoz T, Escribano MI, Merodio C (2001) Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit. Postharvest Biol Technol 23:33–39. (PMID: 10.1016/S0925-5214(01)00100-4)
Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488. (PMID: 190831531908315310.1007/s11103-008-9435-0)
Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748. (PMID: 1942381410.1126/science.1171661)
Bhuiyan NH, Selvaraj G, Wei YD, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4:158–159. (PMID: 19649200263751010.4161/psb.4.2.7688)
Blair MW, Izquierdo P, Astudillo C, Grusak MA (2012) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:1013–1017.
Blair MW, Wu J, Wang S (2016) Editorial: Food legume diversity and legume research policies. Crop Journal 4(5):339–343. (PMID: 10.1016/j.cj.2016.09.001)
Boba A, Kostyn K, Kostyn A, Wojtasik W, Dziadas M, Preisner M, Szopa J, Kulma A (2017) Methyl salicylate level increase in flax after Fusarium oxysporum infection is associated with phenylpropanoid pathway activation. Front Plant Sci 7:1951. https://doi.org/10.3389/fpls.2016.01951. (PMID: 10.3389/fpls.2016.01951281637095247452)
Bolouri Moghaddam MR, Van den Eden W (2012) Sugars and plant innate immunity. J Exp Bot 63(11):3989–3998. (PMID: 2255328810.1093/jxb/ers129)
Buruchara R, Camacho L (2000) Common bean reaction to Fusarium oxysporum f. sp. phaseoli, the cause of severe vascular wilt in Central Africa. J Phytopathol 148:39–45. (PMID: 10.1111/j.1439-0434.2000.tb04622.x)
Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262(5141):1883–1886. (PMID: 826607910.1126/science.8266079)
Chen JB, Wang SM, Jing RL, Mao XG (2009) Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol 166:12–19. (PMID: 1856561810.1016/j.jplph.2008.02.010)
Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klingenberg A, Primavesi LF, Paul MJ, Schluepmann H (2011) Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. Plant Physiol 157:160–174. (PMID: 21753116316586710.1104/pp.111.180422)
Dempsey DA, Klessig DF (2012) SOS–too many signals for systemic acquired resistance? Trends Plant Sci 17:538–545. (PMID: 2274931510.1016/j.tplants.2012.05.011)
Deng YY, Li JQ, Wu SF, Zhu YP, Chen YW, He FC (2006) Integrated nr database in protein annotation system and its localization. Comput Eng 32:71–74.
Díaz-Camino C, Annamalai P, Sanchez F, Kachroo A, Ghabrial SA (2011) An effective virus-based gene silencing method for functional genomics studies in common bean. Plant Methods 7:16. https://doi.org/10.1186/1746-4811-7-16. (PMID: 10.1186/1746-4811-7-16216689933141803)
Ding PT, Ding YL (2020) Stories of salicylic acid: aplant defense hormone. Trends Plant Sci 25(6):549–565. (PMID: 3240769510.1016/j.tplants.2020.01.004)
Do HM, Hong JK, Jung HW, Kim SH, Ham JH, Hwang BK (2003) Expression of peroxidase like genes, H 2 O 2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. Mol Plant Microbe In 16:196–205. (PMID: 10.1094/MPMI.2003.16.3.196)
Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy ASN, Poovaiah BW (2009) Ca 2+ /calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457(7233):1154–1158. (PMID: 1912267510.1038/nature07612)
Forlani G (2010) Differential in vitro responses of rice cultivars to Italian lineages of the blast pathogen Pyricularia grisea. 2. aromatic biosynthesis. J Plant Physiol 167:928–932. (PMID: 2014947710.1016/j.jplph.2010.01.013)
Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102(5):1773–1778. (PMID: 1566838154788310.1073/pnas.0409227102)
Fredeen AL, Rao IM, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89:225–230. (PMID: 16666518105582310.1104/pp.89.1.225)
Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863. (PMID: 2337369910.1146/annurev-arplant-042811-105606)
Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51(2):294–330. (PMID: 2005659210.1093/pcp/pcp190)
Gibertia S, Berteab CM, Narayanab R, Maffeib ME, Forlani G (2012) Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. J Plant Physiol 169:249–254. (PMID: 10.1016/j.jplph.2011.10.008)
Gupta S, Chakraborti D, Sengupta A, Basu D, Das S (2010) Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. cicerirace I. Plos One. https://doi.org/10.1371/journal.pone.0009030. (PMID: 10.1371/journal.pone.0009030212004343006173)
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538. (PMID: 20566705292390910.1104/pp.110.157370)
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280. (PMID: 1468141230879710.1093/nar/gkh063)
Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular superoxide generation followed by an increase incytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39:721–730. (PMID: 10.1093/oxfordjournals.pcp.a029426)
Klessig DF, Choi HW, Dempsey DA (2018) Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant-Microbe Interact 31:871–888. (PMID: 297817622978176210.1094/MPMI-03-18-0067-CR)
Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. P Natl Acad Sci USA 100:16101–16106. (PMID: 10.1073/pnas.0307162100)
Kumar D, Gustafsson C, Klessig DF (2006) Validation of RNAi silencing specificity using synthetic genes: Salicylic acid-binding protein 2 is required for innate immunity in plants. Plant J 45:863–868. (PMID: 1646051810.1111/j.1365-313X.2005.02645.x16460518)
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Plant microbiome. Salicylic acid mod ulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864. (PMID: 2618491510.1126/science.aaa8764)
Lee MW, Lu H, Jung HW, Greenberg JT (2007) A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2. Mol Plant Microbe In 20:1192–1200. (PMID: 10.1094/MPMI-20-10-1192)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25:402–408. (PMID: 10.1006/meth.2001.1262)
Manosalva PM, Park SW, Forouhar F, Tong L, Fry WE, Klessig DF (2010) Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant Microbe In 23:1151–1163. (PMID: 10.1094/MPMI-23-9-1151)
Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60:367–376. (PMID: 1926475810.1093/jxb/ern278)
Morkunas I, Ratajczak L (2014) The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant 36(7):1607–1619. (PMID: 10.1007/s11738-014-1559-z)
Morkunas I, Marczak L, Stachowiak J, Stobiecki M (2005) Sucrose-induced lupine defense against Fusarium oxysporum: Sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium oxysporum. Plant Physiol Bioch 43(4):363–373. (PMID: 10.1016/j.plaphy.2005.02.011)
Morkunas I, Narożna D, Nowak W, Samardakiewicz W, Remlein-Starosta D (2011) Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine. J Plant Physiol 168:424–433. (PMID: 2105651310.1016/j.jplph.2010.08.017)
Morkunas I, Formela M, Floryszak-Wieczorek J, Marczak Ł, Narożna D, Nowak W, Bednarski W (2013) Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum. Plant Sci 211:102–121. (PMID: 2398781610.1016/j.plantsci.2013.07.007)
Muchembled J, Lounès-HadjSahraoui A, Grandmougin-Ferjani A, Sancholle M (2006) Changes in lipid composition of Blumeria graminis f. sp. tritici conidia produced on wheat leaves treated with heptanoyl salicylic acid. Phytochemistry 67:1104–1109. (PMID: 1664772710.1016/j.phytochem.2006.02.025)
Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846. (PMID: 210293266640277)
Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW (2007) The GH 3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol 144(2):1144–1156. (PMID: 17468220191416910.1104/pp.107.097691)
Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007a) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116. (PMID: 10.1126/science.1147113)
Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007b) GH 3 -mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282(13):10036–10046. (PMID: 1727697710.1074/jbc.M610524200)
Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441. (PMID: 1825770910.1146/annurev.arplant.59.032607.092945)
Reignault P, Cojan A, Muchembled J, Sahouri AL, Durand R, Sancholle M (2001) Trehalose induces resistance to powdery mildew in wheat. New Phytol 149:519–529. (PMID: 3387334010.1046/j.1469-8137.2001.00035.x)
Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:185–205. (PMID: 10.1105/tpc.010455)
Sagisaka S (1976) The occurrence of peroxide in a perennial plant, Populusgelrica. Plant Physiol 57:308–309. (PMID: 1665947254201310.1104/pp.57.2.308)
Schwartz HF, Hall R (2005) Compendium of Bean Diseases. American Phytopathological Society Press, St. Paul.
Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721. (PMID: 10.1038/385718a0)
Smit F, Dubery LA (1997) Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry 44:811–815. (PMID: 10.1016/S0031-9422(96)00595-X)
Stokes ME, Chattopadhyay A, Wilkins O, Nambara E, Campbell MM (2013) Interplay between sucrose and folate modulates auxin signaling in Arabidopsis. Plant Physiol 162:1552–1565. (PMID: 23690535370755210.1104/pp.113.215095)
Suárez-Martínez SE, Ferriz-Martínez RA, Campos-Vega R, Elton-Puente JE, Carbot KDLT, García-Gasca T (2016) Bean seeds: leading nutraceutical source for human health. CyTA J Food 14:131–137. (PMID: 10.1080/19476337.2015.1063548)
Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso 1 promoter. Plant Cell 15:2076–12092. (PMID: 1295311218133210.1105/tpc.014597)
Syros T, Yupsanis T, Zafiriadis H, Economou A (2004) Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. J Plant Physiol 161:69–77. (PMID: 1500266610.1078/0176-1617-00938)
Tatusov RL, Galperin MY, Natale DA (2000) The COG database: a tool for genome scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36. (PMID: 1059217510239510.1093/nar/28.1.33)
Thibaud MC, Gineste S, Nussaume L, Robaglia C (2004) Sucrose increases pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA-dependent but NPR1-independent signalling pathway. Plant Physiol Biochem 42:81–88. (PMID: 1506108810.1016/j.plaphy.2003.10.012)
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. (PMID: 3334321333432110.1038/nprot.2012.016)
Varanasi AV, Talati JG (2014) Effect of exogenous salicylic acid on plant defense mechanism in chickpea (Cicer arietinum L.) against infection of Meloidogyne incognita. Indian J Agr Biochem 27(1):52–59.
Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117. (PMID: 10.1021/jf9801973)
Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456. (PMID: 1864399410.1111/j.1365-313X.2008.03618.x)
Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormoneto combat disease. Annu Rev Phytopathol 47:177–206. (PMID: 1940065310.1146/annurev.phyto.050908.135202)
Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM (2016) Arabidopsis thaliana GH3 5 acyl acid amidosynthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. P Natl Acad Sci USA 113(48):13917–13922. (PMID: 10.1073/pnas.1612635113)
White RF (1979) Acetylsalicylic acid induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412. (PMID: 1863162610.1016/0042-6822(79)90019-9)
Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610–1614. (PMID: 2069644510.1016/j.phytochem.2010.07.007)
Xing F, Hua H, Selvaraj JN, Zhao Y, Zhou L, Liu X, Liu Y (2014) Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 46:343–350. (PMID: 10.1016/j.foodcont.2014.04.037)
Xue RF, Wu J, Wang LF, Blair MW, Wang XM, Ge WD, Wang SM (2014) Salicylic acid enhances resistance to Fusarium oxysporum f. sp. phaseoli in common beans (Phaseolus vulgaris L.). J Plant Growth Regul 33:470–476. (PMID: 10.1007/s00344-013-9376-y)
Xue RF, Wu J, Zhu ZD, Wang LF, Wang XM, Wang SM, Blair MW (2015) Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. Plos One 10(6):e0127698. (PMID: 26030070445223710.1371/journal.pone.0127698)
Xue RF, Wang L, Feng M, Ge WD (2018) Identification and expression analysis of likely orthologs of tobacco salicylic acid binding protein 2 in common beans. Acta Agron Sin 44(5):642–649. (PMID: 10.3724/SP.J.1006.2018.00642)
Zhang Y, Li X (2019) Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol 50:29–36. (PMID: 3090169210.1016/j.pbi.2019.02.004)
Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxinsignaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145(2):450–464. (PMID: 17704230204873610.1104/pp.107.106021)
Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S (2019) A non-tandem CCCH-type zinc finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol 223:1918–1936. (PMID: 3109133710.1111/nph.15925)
Zhou JM, Zhang Y (2020) Plant Immunity: danger perception and signaling. Cell 181:978–989. (PMID: 3244240710.1016/j.cell.2020.04.028)
معلومات مُعتمدة: 31972962 National Natural Science Foundation of China; 31401447 National Natural Science Foundation of China; CARS-08 Agriculture Research System of China; TENX-07 The Evans Allen grant from the United States Department of Agriculture (USDA)
المشرفين على المادة: 0 (Plant Proteins)
EC 1.- (Oxidoreductases, O-Demethylating)
EC 1.- (methyl etherase)
O414PZ4LPZ (Salicylic Acid)
تواريخ الأحداث: Date Created: 20210615 Date Completed: 20210930 Latest Revision: 20220424
رمز التحديث: 20221213
DOI: 10.1007/s00122-021-03830-1
PMID: 34128089
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2242
DOI:10.1007/s00122-021-03830-1