دورية أكاديمية

Centrosomal P4.1-associated protein (CPAP) positively regulates endocytic vesicular transport and lysosome targeting of EGFR.

التفاصيل البيبلوغرافية
العنوان: Centrosomal P4.1-associated protein (CPAP) positively regulates endocytic vesicular transport and lysosome targeting of EGFR.
المؤلفون: Gudi R; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA. gudi@musc.edu., Palanisamy V; Department of Biochemistry, Medical University of South Carolina, Charleston, SC, 29425, USA., Vasu C; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA. vasu@musc.edu.
المصدر: Scientific reports [Sci Rep] 2021 Jun 16; Vol. 11 (1), pp. 12689. Date of Electronic Publication: 2021 Jun 16.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Lysosomes/*metabolism , Microtubule-Associated Proteins/*metabolism , Transport Vesicles/*metabolism, Cell Line, Tumor ; Endocytosis ; Endosomes/metabolism ; ErbB Receptors/metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Ligands ; Microtubule-Associated Proteins/genetics ; Multivesicular Bodies/metabolism ; Protein Transport
مستخلص: Centrosomal P4.1-associated protein (CPAP) plays a critical role in restricting the centriole length in human cells. Here, we report a novel, positive regulatory influence for CPAP on endocytic vesicular transport (EVT) and lysosome targeting of internalized-cell surface receptor EGFR. We observed that higher CPAP levels cause an increase in the abundance of multi-vesicular body (MVB) and EGFR is detectable in CPAP-overexpression induced puncta. The surface and cellular levels of EGFR are higher under CPAP deficiency and lower under CPAP overexpression. While ligand-engagement induced internalization or routing of EGFR into early endosomes is not influenced by cellular levels of CPAP, we found that targeting of ligand-activated, internalized EGFR to lysosome is impacted by CPAP levels. Transport of ligand-bound EGFR from early endosome to late endosome/MVB and lysosome is diminished in CPAP-depleted cells. Moreover, CPAP depleted cells appear to show a diminished ability to form MVB structures upon EGFR activation. These observations suggest a positive regulatory effect of CPAP on EVT of ligand-bound EGFR-like cell surface receptors to MVB and lysosome. Overall, identification of a non-centriolar function of CPAP in endocytic trafficking provides new insights in understanding the non-canonical cellular functions of CPAP.
References: Curr Biol. 2009 Jun 23;19(12):1005-11. (PMID: 19481458)
J Biochem. 2006 Jul;140(1):13-21. (PMID: 16877764)
Annu Rev Cell Dev Biol. 2007;23:519-47. (PMID: 17506697)
J Cell Biol. 1996 Nov;135(4):913-24. (PMID: 8922376)
EMBO J. 2013 Apr 17;32(8):1141-54. (PMID: 23511974)
Nat Genet. 2005 Apr;37(4):353-5. (PMID: 15793586)
Semin Cell Dev Biol. 2014 Jul;31:2-10. (PMID: 24709024)
Cytotechnology. 1993 Jan;11(Suppl 1):S47-9. (PMID: 22358707)
Cell. 2011 Feb 4;144(3):364-75. (PMID: 21277013)
Dev Cell. 2016 May 23;37(4):362-376. (PMID: 27219064)
Curr Opin Cell Biol. 2008 Aug;20(4):408-14. (PMID: 18502633)
Biochem Biophys Res Commun. 2006 Jan 20;339(3):742-7. (PMID: 16316625)
Mol Biol Cell. 2009 Apr;20(8):2337-50. (PMID: 19244346)
Exp Cell Res. 2008 Aug 15;314(14):2591-602. (PMID: 18586240)
Cold Spring Harb Perspect Biol. 2013 Dec 01;5(12):a016949. (PMID: 24296170)
EMBO J. 2006 Jan 11;25(1):1-12. (PMID: 16052208)
Exp Cell Res. 2009 May 15;315(9):1567-73. (PMID: 19133258)
Nat Rev Mol Cell Biol. 2009 Sep;10(9):597-608. (PMID: 19696797)
J Cell Biol. 2010 May 3;189(3):399-406. (PMID: 20439993)
J Cell Sci. 2011 Nov 15;124(Pt 22):3884-93. (PMID: 22100914)
Biochem J. 2011 Jul 1;437(1):13-24. (PMID: 21668412)
J Biol Chem. 2015 Mar 13;290(11):6890-902. (PMID: 25616662)
Science. 2008 Feb 29;319(5867):1244-7. (PMID: 18309083)
Nature. 2012 May 23;485(7399):465-70. (PMID: 22622570)
Mol Neurodegener. 2014 Aug 25;9:31. (PMID: 25152012)
J Cell Biol. 1996 Mar;132(6):1011-23. (PMID: 8601581)
Trends Cell Biol. 2014 Jan;24(1):26-34. (PMID: 24295852)
Nat Rev Mol Cell Biol. 2004 Apr;5(4):317-23. (PMID: 15071556)
Biol Open. 2012 Jun 15;1(6):559-65. (PMID: 23213448)
Annu Rev Biochem. 2018 Jun 20;87:871-896. (PMID: 29661000)
Nat Rev Mol Cell Biol. 2008 Nov;9(11):833-45. (PMID: 18946473)
Semin Cell Dev Biol. 2014 Jul;31:20-9. (PMID: 24727350)
Mol Biol Evol. 2014 Mar;31(3):594-604. (PMID: 24288161)
J Cell Biol. 2011 May 16;193(4):711-25. (PMID: 21576394)
FEBS Lett. 2001 Feb 16;490(3):142-52. (PMID: 11223029)
J Cell Biol. 2013 Feb 18;200(4):373-83. (PMID: 23420871)
Mol Biol Cell. 2004 Jun;15(6):2697-706. (PMID: 15047868)
Curr Opin Cell Biol. 1997 Aug;9(4):496-504. (PMID: 9261061)
Cold Spring Harb Perspect Biol. 2014 May 22;6(10):a016857. (PMID: 24851870)
Traffic. 2002 May;3(5):321-30. (PMID: 11967126)
J Med Genet. 2010 Jun;47(6):411-4. (PMID: 20522431)
EMBO J. 2016 Apr 15;35(8):803-19. (PMID: 26929011)
Traffic. 2008 Apr;9(4):492-509. (PMID: 18194411)
EMBO J. 2011 Oct 21;30(23):4790-804. (PMID: 22020124)
Cell. 2005 Sep 9;122(5):735-49. (PMID: 16143105)
Curr Biol. 2009 Jun 23;19(12):1012-8. (PMID: 19481460)
J Cell Biol. 2001 Dec 24;155(7):1251-64. (PMID: 11756475)
PLoS Genet. 2012;8(11):e1003022. (PMID: 23166506)
J Cell Biol. 2013 Jul 22;202(2):211-9. (PMID: 23857771)
Cell. 2010 Apr 30;141(3):497-508. (PMID: 20434987)
Nat Rev Cancer. 2008 Nov;8(11):835-50. (PMID: 18948996)
J Biol Chem. 2014 May 30;289(22):15166-78. (PMID: 24700465)
Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25. (PMID: 19603039)
Cold Spring Harb Perspect Biol. 2014 Oct 30;6(12):a022509. (PMID: 25359499)
EMBO J. 2011 Aug 31;30(17):3481-500. (PMID: 21878991)
Nature. 2016 Sep 1;537(7618):107-111. (PMID: 27556945)
Annu Rev Biochem. 2019 Jun 20;88:691-724. (PMID: 30601682)
Mol Biol Cell. 2004 Aug;15(8):3688-97. (PMID: 15181154)
J Cell Biol. 2005 Nov 7;171(3):437-45. (PMID: 16275750)
Curr Opin Cell Biol. 2009 Aug;21(4):575-81. (PMID: 19442504)
Curr Opin Cell Biol. 2016 Apr;39:53-60. (PMID: 26921695)
Dev Cell. 2015 Apr 20;33(2):176-88. (PMID: 25898167)
Cell Rep. 2018 Nov 13;25(7):1841-1855.e5. (PMID: 30428352)
Science. 1996 Dec 20;274(5295):2086-9. (PMID: 8953040)
Curr Opin Cell Biol. 2017 Feb;44:93-101. (PMID: 27666167)
Nat Commun. 2016 Jun 16;7:11874. (PMID: 27306797)
Mol Cell Biol. 2000 Oct;20(20):7813-25. (PMID: 11003675)
PLoS Biol. 2005 Jul;3(7):e233. (PMID: 15954801)
Nat Cell Biol. 2009 Jul;11(7):825-31. (PMID: 19503075)
J Cell Biol. 2000 Oct 30;151(3):539-50. (PMID: 11062256)
Nat Cell Biol. 1999 Oct;1(6):376-82. (PMID: 10559966)
معلومات مُعتمدة: P30 CA138313 United States CA NCI NIH HHS; R21 DE026965 United States DE NIDCR NIH HHS; S10 OD018113 United States OD NIH HHS
المشرفين على المادة: 0 (CENPJ protein, human)
0 (Ligands)
0 (Microtubule-Associated Proteins)
EC 2.7.10.1 (EGFR protein, human)
EC 2.7.10.1 (ErbB Receptors)
تواريخ الأحداث: Date Created: 20210617 Date Completed: 20211029 Latest Revision: 20240505
رمز التحديث: 20240505
مُعرف محوري في PubMed: PMC8209166
DOI: 10.1038/s41598-021-91818-8
PMID: 34135376
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-021-91818-8