دورية أكاديمية

How is adaptive potential distributed within species ranges?

التفاصيل البيبلوغرافية
العنوان: How is adaptive potential distributed within species ranges?
المؤلفون: Pennington LK; Environmental Systems Graduate Group, University of California, Merced, California, 95343., Slatyer RA; Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, 53703.; Current Address: Research School of Biology, Australian National University, Acton, ACT, 2600, Australia., Ruiz-Ramos DV; Life and Environmental Sciences Department, University of California, Merced, California, 95343.; Current Address: U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, 65201., Veloz SD; Point Blue Conservation Science, Petaluma, California, 94954., Sexton JP; Life and Environmental Sciences Department, University of California, Merced, California, 95343.
المصدر: Evolution; international journal of organic evolution [Evolution] 2021 Sep; Vol. 75 (9), pp. 2152-2166. Date of Electronic Publication: 2021 Jul 08.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: United States NLM ID: 0373224 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1558-5646 (Electronic) Linking ISSN: 00143820 NLM ISO Abbreviation: Evolution Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : Oxford : Oxford University Press
Original Publication: Lancaster, Pa. : Society for the Study of Evolution
مواضيع طبية MeSH: Gene Flow* , Genetic Variation*, Ecosystem
مستخلص: Quantitative genetic variation (QGV) represents a major component of adaptive potential and, if reduced toward range-edge populations, could prevent a species' expansion or adaptive response to rapid ecological change. It has been hypothesized that QGV will be lower at the range edge due to small populations-often the result of poor habitat quality-and potentially decreased gene flow. However, whether central populations are higher in QGV is unknown. We used a meta-analytic approach to test for a general QGV-range position relationship, including geographic and climatic distance from range centers. We identified 35 studies meeting our criteria, yielding nearly 1000 estimates of QGV (including broad-sense heritability, narrow-sense heritability, and evolvability) from 34 species. The relationship between QGV and distance from the geographic range or climatic niche center depended on the focal trait and how QGV was estimated. We found some evidence that QGV declines from geographic centers but that it increases toward niche edges; niche and geographic distances were uncorrelated. Nevertheless, few studies have compared QGV in both central and marginal regions or environments within the same species. We call for more research in this area and discuss potential research avenues related to adaptive potential in the context of global change.
(© 2021 The Authors. Evolution © 2021 The Society for the Study of Evolution.)
References: Angert, A. L., M. G. Bontrager, and J. Ågren. 2020. What do we really know about adaptation at range edges? Annu. Rev. Ecol. Evol. Syst. 51:341-3613.
Antonovics, J. 1976. The nature of limits to natural selection. Ann. Mo. Bot. Gard. 63:224-247.
Aparicio, A. G., M. J. Pastorino, and L. A. Gallo. 2010. Genetic variation of early height growth traits at the xeric limits of Austrocedrus chilensis (Cupressaceae). Austral Ecology 35(7):825-836. https://doi.org/10.1111/j.1442-9993.2009.02090.x.
Bartkowska M. P., and M. O. Johnston. 2009. Quantitative genetic variation in populations of Amsinckia spectabilis that differ in rate of self-fertilization. Evolution 63(5):1103-1117. https://doi.org/10.1111/j.1558-5646.2008.00607.x.
Bérénos, C., P. A. Ellis, J. G. Pilkington, and J. M. Pemberton. 2014. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol. Ecol. 23:3434-3451.
Billington, H. L. and J. Pelham. 1991. Genetic variation in the date of budburst in Scottish birch populations: implications for climate change. Funct. Ecol. 5:403-409.
Bridle, J. R., and T. H. Vines. 2007. Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol. Evol. 22(3):140-147. https://doi.org/10.1016/j.tree.2006.11.002.
Brown, G. P., B. L. Phillips, and R. Shine. 2014. The straight and narrow path: the evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B: Biol. Sci. 281:20141385. 281(1795):20141385. https://doi.org/10.1098/rspb.2014.1385.
Brown, J. H. 1984. On the relationship between abundance and distribution of species. Am. Nat. 124:255-279.
Bulmer, M. G. 1971. The effect of selection on genetic variability. Am. Nat. 105:201-211.
Calenge, C. 2006. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197:516-519.
Channell, R., and M. V. Lomolino. 2000. Trajectories to extinction: spatial dynamics of the contraction of geographical ranges. J. Biogeog. 27(1):169-179. https://doi.org/10.1046/j.1365-2699.2000.00382.x.
Charmantier, A., and D. Garant. 2005. Environmental quality and evolutionary potential: lessons from wild populations. Proc. R. Soc. B: Biol. Sci. 272(1571):1415-1425. https://doi.org/10.1098/rspb.2005.3117.
Charmantier, A., L. E. B. Kruuk, J. Blondel and M. M. Lambrechts. 2004. Testing for microevolution in body size in three blue tit populations. J. Evol. Biol., 17(4), pp.732-743.
Conner, J. K., and D. L. Hartl. 2004. A primer of ecological genetics. Sinauer Associates, Sunderland, MA. ISBN: 087893202X.
Dallas, T., R. R. Decker, and A. Hastings. 2017. Species are not most abundant in the centre of their geographic range or climatic niche. Ecol. Lett. 20:1526-1533.
Day, T. H., C. S. Crean, A. S. Gilburn, D. M. Shuker, and R. W. Wilcockson. 1996. Sexual selection in seaweed flies: genetic variation in male size and its reliability as an indicator in natural populations. Proc. R. Soc. Lond. B Biol. Sci. 263(1374): 1127-1134. https://doi.org/10.1098/rspb.1996.0165.
De Lafontaine, G., J. D. Napier, R. J. Petit, and F. S. Hu. 2018. Invoking adaptation to decipher the genetic legacy of past climate change. Ecology 99(7):1530-1546. https://doi.org/10.1002/ecy.2382.
Eckert, C. G., K. E. Samis, and S. C. Lougheed. 2008. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17:1170-1188.
Environmental Systems Research Institute (ESRI). 2015. ArcGIS. ESRI, Redlands, CA.
Eroukhmanoff, F., A. Hargeby and E. I. Svensson. 2009. Rapid adaptive divergence between ecotypes of an aquatic isopod inferred from FST-QST analysis. Mol. Ecol. 18(23):4912-4923.
Etterson, J. R. 2004. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. genetic architecture of three populations reciprocally planted along an environmental gradient in the great plains. Evolution 58(7):1459-1471. https://doi.org/10.1111/j.0014-3820.2004.tb01727.x.
Etterson, J. R. 2001. Constraint to adaptive evolution in response to global warming. Science 294(5540):151-154. https://doi.org/10.1126/science.1063656.
Falconer, D. S., and T. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Benjamin Cummings, San Francisco, CA. ISBN: 0582243025.
Ferrari, S., and F. Cribari-Neto. 2004. Beta regression for modelling rates and proportions. J. Appl. Stat. 31(7):799-815. https://doi.org/10.1080/0266476042000214501.
Fisher, R. A. 1930. The genetical theory of natural selection. Clarendon Press, Oxford, U.K. ISBN: 0198504403.
Fornoni, J., P. L. Valverde and J. Núñez-Farfán. 2003. Quantitative genetics of plant tolerance and resistance against natural enemies of two natural populations of Datura stramonium. Evol. Ecol. Res., 5(7), pp.1049-1065.
Garcia-Gonzalez, F., L. W. Simmons, J. L. Tomkins, J. S. Kotiaho, and J. P. Evans. 2012. Comparing evolvabilities: common errors surrounding the calculation and use of coefficients of additive genetic variation. Evolution 66:2341-2349.
García-Ramos, G., and M. Kirkpatrick. 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51(1):21-28. https://doi.org/10.1111/j.1558-5646.1997.tb02384.x.
Gienapp, P., S. Fior, F. Guillaume, J. R. Lasky, V. L. Sork, and K. Csilléry. 2017. Genomic quantitative genetics to study evolution in the wild. Trends Ecol. Evol. 32(12):897-908. https://doi.org/10.1016/j.tree.2017.09.004.
Gill, J. L., and E. L. Jensen. 1968. Probability of obtaining negative estimates of heritability. Biometrics 24(3):517. https://doi.org/10.2307/2528315.
Gotelli, N. J., and G. R. Graves. 1996. Null models in ecology. Smithsonian Institution Press, Washington, D.C. ISBN: 1560986573.
Gould, B., D. A. Moeller, V. M. Eckhart, P. Tiffin, E. Fabio, and M. A. Geber. 2014. Local adaptation and range boundary formation in response to complex environmental gradients across the geographical range of Clarkia xantiana ssp xantiana. J. Ecol. 102(1):95-107. https://doi.org/10.1111/1365-2745.12188.
Grady, K. C., D. C. Laughlin, S. M. Ferrier, T. E. Kolb, S. C. Hart, G. J. Allan and T. G. Whitham. 2013. Conservative leaf economic traits correlate with fast growth of genotypes of a foundation riparian species near the thermal maximum extent of its geographic range. Funct. Ecol., 27(2), pp.428-438.
Griffin, P. C., and Y. Willi. 2014. Evolutionary shifts to self-fertilisation restricted to geographic range margins in North American Arabidopsis lyrata. Ecol. Lett. 17:484-490.
Gu, H. and W. Danthanarayana. 1992. Quantitative genetic analysis of dispersal in Epiphyas postvittana. I. Genetic variation in flight capacity. Heredity, 68(1), pp.53-60.
Hampe, A., and R. J. Petit. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8:461-467.
Hansen, T. F., C. Pélabon, and D. Houle. 2011. Heritability is not evolvability. Evol. Biol. 38:258. PMID: 1732160.
Hargreaves, A. L., E. Samis Karen, and C. G. Eckert. 2014. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183:157-173.
Hendrickx, F., J. P. Maelfait and L. Lens. 2008. Effect of metal stress on life history divergence and quantitative genetic architecture in a wolf spider. J. Evol. Biol., 21(1), pp.183-193.
Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15):1965-1978. https://doi.org/10.1002/joc.1276.
Hoffmann, A., and V. Kellermann. 2006. Revisiting heritable variation and limits to species distribution: recent developments. Isr. J. Ecol. Evol. 52:247-261.
Hoffmann, A. A., and M. W. Blows. 1994. Species borders: ecological and evolutionary perspectives. Trends Ecol. Evol. 9(6):223-227. https://doi.org/10.1016/0169-5347(94)90248-8.
Hoffmann, A. A., C. M. Sgrò, and T. N. Kristensen. 2017. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32(7):506-517. https://doi.org/10.1016/j.tree.2017.03.012.
Holt, R. D., and R. Gomulkiewicz. 1997. How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am. Nat. 149:563-572.
Houle, D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130:195-204.
Jallow, M. F. and C. W. Hoy. 2006. Quantitative genetics of adult behavioral response and larval physiological tolerance to permethrin in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 99(4), pp.1388-1395.
Kawecki, T. J. 2008. Adaptation to marginal habitats. Annu. Rev. Ecol. Evol. Syst. 39:321-342.
Kimura, M. 1958. On the change of population fitness by natural selection. Heredity 12:145-167.
Kiso, Shinya, T. Miyake, and K. Yamahira. 2012. Heritability and genetic correlation of abdominal and caudal vertebral numbers in latitudinal populations of the medaka Oryzias latipes. Environ. Biol. Fishes, 93(2):185-192. https://doi.org/10.1007/s10641-011-9904-1.
Knopp, T., J. M. Cano, P. A. Crochet and J. Merilä. 2007. Contrasting levels of variation in neutral and quantitative genetic loci on island populations of moor frogs (Rana arvalis). Conserv. Genet., 8(1), pp.45-56.
Kottler, E. J., E. E. Dickman, J. P. Sexton, N. C. Emery, and S. J. Franks. 2021. Draining the Swamping Hypothesis: Little Evidence that Gene Flow Reduces Fitness at Range Edges. Trends in Ecology & Evolution 36(6):533-544. https://doi.org/10.1016/j.tree.2021.02.004.
Kruuk, L. E. B., T. H. Clutton-Brock, J. Slate, J. M. Pemberton, S. Brotherstone, and F. E. Guinness. 2000. Heritability of fitness in a wild mammal population. Proc. Natl. Acad. Sci. 97:698-703.
Lande, R., and S. Shannon. 1996. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50(1):434. https://doi.org/10.2307/2410812.
Laurila, A., S. Karttunen, J Merilä. 2002. Adaptive phenotypic plasticity and genetics of larval life histories in two rana temporaria populations. Evolution 56(3):617-627. https://doi.org/10.1111/j.0014-3820.2002.tb01371.x.
Lee-Yaw, J. A., H. M. Kharouba, M. Bontrager, C. Mahony, A. M. Csergő, A. M. E. Noreen, Q. Li, R. Schuster, and A. L. Angert. 2016. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecol. Lett. 19:710-722.
Lesica, P., and F. W. Allendorf. 1995. When are peripheral populations valuable for conservation? Conserv. Biol. 9:753-760.
Lira-Noriega, A., and J. D. Manthey. 2014. Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68:1082-1093.
Lobo, A., E. D. Kjaer, D. C. Olrik, L. G. Stener, and J. K. Hansen. 2018. Genetic diversity and genotypic stability in Prunus avium L. at the northern parts of species distribution range. Ann. For. Sci. 75(2). https://doi.org/10.1007/s13595-018-0740-8.
Lopez-Gallego, C. and P. O'Neil. 2014. Genetic variation and the potential response to selection on leaf traits after habitat degradation in a long-lived cycad. Evol. Ecol., 28(4), pp.775-791.
Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA. ISBN: 0878934812.
Ma, F. Z., Z. C. Lü, R. Wang and F. H. Wan. 2014. Heritability and evolutionary potential in thermal tolerance traits in the invasive Mediterranean cryptic species of Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS One, 9(7), p.e103279.
Macdonald, S. L., J. Llewelyn, C. Moritz, and B. L. Phillips. 2017. Peripheral isolates as sources of adaptive diversity under climate change. Front. Ecol. Evol. 5:88.
Magiafoglou, A., and A. Hoffmann. 2003. Thermal adaptation inDrosophila serrata under conditions linked to its southern border: Unexpected patterns from laboratory selection suggest limited evolutionary potential. J. Genet. 82(3):179-189. https://doi.org/10.1007/bf02715817.
Marko, P. B., and M. W. Hart. 2011. The complex analytical landscape of gene flow inference. Trends Ecol. Evol. 26(9):448-456. https://doi.org/10.1016/j.tree.2011.05.007.
Martínez-Padilla, J., A. Estrada, R. Early, and F. Garcia-Gonzalez. 2017. Evolvability meets biogeography: evolutionary potential decreases at high and low environmental favourability. Proc. R Soc. B: Biol. Sci. 284(1856):20170516. https://doi.org/10.1098/rspb.2017.0516.
McKay, J. K., and R. G. Latta. 2002. Adaptive population divergence: markers, QTL and traits. Trends Ecol. Evol. 17(6):285-291. https://doi.org/10.1016/s0169-5347(02)02478-3.
Merilä, J., F. Söderman, R. O'hara, K. Räsänen and A. Laurila. 2004. Local adaptation and genetics of acid-stress tolerance in the moor frog, Rana arvalis. Conserv. Genet., 5(4), pp.513-527.
Messiaen, M., C. R. Janssen, L. De Meester and K. A. C. De Schamphelaere. 2013. The initial tolerance to sub-lethal Cd exposure is the same among ten naïve pond populations of Daphnia magna, but their micro-evolutionary potential to develop resistance is very different. Aquat. Toxicol., 144, pp.322-331.
Messina, F. J.. 1993. Heritability and ‘evolvability’ of fitness components in Callosobruchus maculatus. Heredity, 71(6), pp.623-629.
Mitchell, K. A. and A. A. Hoffmann. 2010. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol., 24(3), pp.694-700.
Mittell, E. A., S. Nakagawa, and J. D. Hadfield. 2015. Are molecular markers useful predictors of adaptive potential? Ecol. Lett. 18:772-778.
Mousseau, T. A., and D. A. Roff. 1987. Natural selection and the heritability of fitness components. Heredity 59:181-197.
Nespolo, R. F., J. L. Bartheld, A. Gonzalez, A. Bruning, D. A. Roff, L. D. Bacigalupe and J. D. Gaitán-Espitia. 2014. The quantitative genetics of physiological and morphological traits in an invasive terrestrial snail: additive vs. non-additive genetic variation. Funct. Ecol., 28(3), pp.682-692.
Nilsen, E. B., S. Pedersen, and J. D. C. Linnell. 2008. Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? Ecol. Res. 23:635-639.
Paccard, A., J. Van Buskirk, and Y. Willi. 2016. Quantitative genetic architecture at latitudinal range boundaries: reduced variation but higher trait independence. Am. Nat. 187:667-677.
O'Neil, P., and J. Schmitt. 1993. Genetic constraints on the independent evolution of male and female reproductive characters in the tristylous plant Lythrum salicaria. Evolution 47(5):1457-1471. https://doi.org/10.1111/j.1558-5646.1993.tb02168.x.
Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42.
Pebesma, E., and R. Bivand. 2005. Classes and methods for spatial data in R. R News 5:9-13.
Pironon, S., G. Papuga, J. Villellas, A. L. Angert, M. B. García, and J. D. Thompson. 2016. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92:1877-1909. https://doi.org/10.1111/brv.12313.
Polechová, J. 2018. Is the sky the limit? On the expansion threshold of a species’ range. PLoS Biol. 16(6):e2005372. https://doi.org/10.1371/journal.pbio.2005372.
Polechová, J., and N. H. Barton. 2015. Limits to adaptation along environmental gradients. Proc. Natl. Acad. Sci. 112:6401-6406.
Pompini, M., E. S. Clark and C. Wedekind. 2013. Pathogen-induced hatching and population-specific life-history response to waterborne cues in brown trout (Salmo trutta). Behav. Ecol. Sociobiol., 67(4), pp.649-656.
Posthuma, L., R. F. Hogervorst, E. N. G. Joosse, and N. M. Van Straalen. 1993. Genetic variation and covariation for characteristics associated with cadmium tolerance in natural populations of the springtail Orchesella cincta (L.). Evolution 47(2):619-631. https://doi.org/10.1111/j.1558-5646.1993.tb02116.x.
Pujol, B., and J. R. Pannell. 2008. Reduced responses to selection after species range expansion. Science 321(5885):96-96. https://doi.org/10.1126/science.1157570.
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Rico, Y., D. Ethier, C. Davy, J. Sayers, R. Weir, B. Swanson, J. Nocera, and C. Kyle. 2016. Spatial patterns of immunogenetic and neutral variation underscore the conservation value of small, isolated American badger populations. Evol. Appl. 9:1271-1284.
Robinson, M. R., A. W. Santure, I. DeCauwer, B. C. Sheldon, and J. Slate. 2013. Partitioning of genetic variation across the genome using multimarker methods in a wild bird population. Mol. Ecol. 22:3963-3980.
Sagarin, R. D., and S. D. Gaines. 2002. The “abundant centre” distribution: to what extent is it a biogeographical rule? Ecol. Lett. 5:137-147.
Samis, K. E., and C. G. Eckert. 2007. Testing the abundant center model using range-wide demographic surveys of two coastal dune plants. Ecology 88:1747-1758.
Service P. M.. 2000. The genetic structure of female life history in D. melanogaster: comparisons among populations. Genet. Res. 75, pp.153-166.
Sexton, J. P., P. J. McIntyre, A. L. Angert, and K. J. Rice. 2009. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40:415-436.
Sexton, J. P., S. Y. Strauss, and K. J. Rice. 2011. Gene flow increases fitness at the warm edge of a species’ range. Proc. Natl. Acad. Sci. 108:11704-11709.
Sexton, J. P., M. B. Hufford, A. Bateman, D. B. Lowry, H. Meimberg, S. Y. Strauss, and K. J. Rice. 2016. Climate structures genetic variation across a species’ elevation range: a test of range limits hypotheses. Mol. Ecol. 25:911-928.
Shama, L. N., M. E. L. I. N. A. CAMPERO-PAZ, K. M. Wegner, M. De Block and R. Stoks. 2011. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Mol. Ecol., 20(14), pp.2929-2941.
Shaw, R. G., and J. R. Etterson. 2012. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195(4):752-765. https://doi.org/10.1111/j.1469-8137.2012.04230.x.
Sheth, S. N., and A. L. Angert. 2016. Artificial selection reveals high genetic variation in phenology at the trailing edge of a species range. Am. Nat. 187:182-193.
Simas, A. B., and A. V. Rocha. 2006. betareg: beta regression. R package version 1.2.
Sniegula, S., M. J. Golab, S. M. Drobniak, and F. Johansson. 2016. Seasonal time constraints reduce genetic variation in life-history traits along a latitudinal gradient. J. Anim. Ecol. 85(1):187-198. https://doi.org/10.1111/1365-2656.12442.
Snyder, R. J. 1991. Migration and life histories of the threespine stickleback: evidence for adaptive variation in growth rate between populations. Environ. Biol. Fishes. 31(4):381-388. https://doi.org/10.1007/bf00002363.
Sommer, S. and P. B. Pearman. 2003. Quantitative genetic analysis of larval life history traits in two alpine populations of Rana temporaria. Genetica, 118(1), pp.1-10.
Tigerstedt, P. M. A. 2009. Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas 75(1):47-60. https://doi.org/10.1111/j.1601-5223.1973.tb01141.x.
Uller, T., M. Olsson and F. Ståhlberg. 2002. Variation in heritability of tadpole growth: an experimental analysis. Heredity, 88(6), pp.480-484.
Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36:1-48.
Volis, S.. 2007. Correlated patterns of variation in phenology and seed production in populations of two annual grasses along an aridity gradient. Evolutionary Ecology, 21(3), pp.381-393.
Volis, S., D. Ormanbekova, K. Yermekbayev, M. Song, and I. Shulgina. 2014. Introduction beyond a species range: a relationship between population origin, adaptive potential and plant performance. Heredity, 113(3), pp.268-276.
Volis, S., D. Ormanbekova, K. Yermekbayev, M. Song, and I. Shulgina. 2016. The conservation value of peripheral populations and a relationship between quantitative trait and molecular variation. Evol. Biol. 43(1):26-36. https://doi.org/10.1007/s11692-015-9346-3.
Volis, S., D. Ormanbekova, K. Yermekbayev, S Abugalieva, Y. Turuspekov, and I. Shulgina. 2016. Genetic architecture of adaptation to novel environmental conditions in a predominantly selfing allopolyploid plant. Heredity 116(6):485-490. https://doi.org/10.1038/hdy.2016.2.
Widén, B. and S. Andersson. 1993. Quantitative genetics of life-history and morphology in a rare plant, Senecio integrifolius. Heredity, 70(5), pp.503-514.
Wood, C. W., and E. D. Brodie. 2016. Evolutionary response when selection and genetic variation covary across environments. Ecol. Lett. 19:1189-1200.
Zhou, Y., J. K. Kelly and M. D. Greenfield. 2011. Testing the fisherian mechanism: examining the genetic correlation between male song and female response in waxmoths. Evolutionary Ecology, 25(2), pp.307-329.
فهرسة مساهمة: Keywords: Evolvability; genetic variation; heritability; quantitative genetic variation; species range limits
سلسلة جزيئية: figshare 10.6084/m9.figshare.13871867.v1
تواريخ الأحداث: Date Created: 20210624 Date Completed: 20211210 Latest Revision: 20211214
رمز التحديث: 20221213
DOI: 10.1111/evo.14292
PMID: 34164814
قاعدة البيانات: MEDLINE
الوصف
تدمد:1558-5646
DOI:10.1111/evo.14292