دورية أكاديمية

Expression of Cds4/5 of Arabidopsis chloroplasts in E. coli reveals the membrane topology of the C-terminal region of CDP-diacylglycerol synthases.

التفاصيل البيبلوغرافية
العنوان: Expression of Cds4/5 of Arabidopsis chloroplasts in E. coli reveals the membrane topology of the C-terminal region of CDP-diacylglycerol synthases.
المؤلفون: Sekiya Y; Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan., Sawasato K; Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan., Nishiyama KI; Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan.
المصدر: Genes to cells : devoted to molecular & cellular mechanisms [Genes Cells] 2021 Sep; Vol. 26 (9), pp. 727-738. Date of Electronic Publication: 2021 Jul 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Ltd Country of Publication: England NLM ID: 9607379 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2443 (Electronic) Linking ISSN: 13569597 NLM ISO Abbreviation: Genes Cells Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Science Ltd., 1996-
مواضيع طبية MeSH: Arabidopsis Proteins/*chemistry , Chloroplasts/*genetics , Diacylglycerol Cholinephosphotransferase/*chemistry, Arabidopsis ; Arabidopsis Proteins/genetics ; Arabidopsis Proteins/metabolism ; Cell Membrane/chemistry ; Cell Membrane/metabolism ; Chloroplasts/metabolism ; Diacylglycerol Cholinephosphotransferase/genetics ; Diacylglycerol Cholinephosphotransferase/metabolism ; Escherichia coli ; Escherichia coli Proteins/chemistry ; Escherichia coli Proteins/genetics ; Escherichia coli Proteins/metabolism ; Genetic Complementation Test ; Protein Domains
مستخلص: CDP-diacylglycerol synthases (Cds) are conserved from bacteria to eukaryotes. Bacterial CdsA is involved not only in phospholipid biosynthesis but also in biosynthesis of glycolipid MPIase, an essential glycolipid that catalyzes membrane protein integration. We found that both Cds4 and Cds5 of Arabidopsis chloroplasts complement cdsA knockout by supporting both phospholipid and MPIase biosyntheses. Comparison of the sequences of CdsA and Cds4/5 suggests a difference in membrane topology at the C-termini, since the region assigned as the last transmembrane region of CdsA, which follows the conserved cytoplasmic domain, is missing in Cds4/5. Deletion of the C-terminal region abolished the function, indicating the importance of the region. Both 6 × His tag attachment to CdsA and substitution of the C-terminal 6 residues with 6 × His did not affect the function. These 6 × His tags were sensitive to protease added from the cytosolic side in vitro, indicating that this region is not a transmembrane one but forms a membrane-embedded reentrant loop. Thus, the C-terminal region of Cds homologues forms a reentrant loop, of which structure is important for the Cds function.
(© 2021 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.)
References: Allaway, D., Cavalca, L., Saini, S., Hocking, P., Lodwig, E. M., Leonard, M. E., & Poole, P. S. (2000). Identification of a putative LPS-associated cation exporter from Rhizobium leguminosarum bv. viciae. FEMS Microbiology Letters, 186, 47-53.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
Blunsom, N. J., & Cockcroft, S. (2020). CDP-Diacylglycerol Synthases (CDS): Gateway to phosphatidylinositol and cardiolipin synthesis. Frontiers in Cell and Developmental Biology, 8, 63. https://doi.org/10.3389/fcell.2020.00063.
Denks, K., Vogt, A., Sachelaru, I., Petriman, N. A., Kudva, R., & Koch, H. G. (2014). The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Molecular Membrane Biology, 31, 58-84. https://doi.org/10.3109/09687688.2014.907455.
Endo, Y., & Nishiyama, K. (2015). Relationship between glycolipozyme MPIase and components comprising the protein transport machinery. Medical Research Archives, 2, 11.
Haselier, A., Akbari, H., Weth, A., Baumgartner, W., & Frentzen, M. (2010). Two closely related genes of Arabidopsis encode plastidial cytidinediphosphate diacylglycerol synthases essential for photoautotrophic growth. Plant Physiology, 153, 1372-1384. https://doi.org/10.1104/pp.110.156422.
Hussain, M., Ichihara, S., & Mizushima, S. (1980). Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. Journal of Biological Chemistry, 255, 3707-3712. https://doi.org/10.1016/S0021-9258(19)85762-9.
Icho, T., Bulawa, C. E., & Raetz, C. R. (1985). Molecular cloning and sequencing of the gene for CDP-diglyceride hydrolase of Escherichia coli. Journal of Biological Chemistry, 260, 12092-12098. https://doi.org/10.1016/S0021-9258(17)38990-1.
Ikegami, A., Nishiyama, K., Matsuyama, S., & Tokuda, H. (2005). Disruption of rpmJ encoding ribosomal protein L36 decreases the expression of secY upstream of the spc operon and inhibits protein translocation in Escherichia coli. Bioscience, Biotechnology, and Biochemistry, 69, 1595-1602.
Kamemoto, Y., Funaba, N., Kawakami, M., Sawasato, K., Kanno, K., Suzuki, S., Nishikawa, H., Sato, R., & Nishiyama, K. I. (2020). Biosynthesis of glycolipid MPIase (membrane protein integrase) is independent of the genes for ECA (enterobacterial common antigen). Journal of General and Applied Microbiology, 66, 169-174. https://doi.org/10.2323/jgam.2019.05.001.
Kawashima, Y., Miyazaki, E., Muller, M., Tokuda, H., & Nishiyama, K. (2008). Diacylglycerol specifically blocks spontaneous integration of membrane proteins and allows detection of a factor-assisted integration. Journal of Biological Chemistry, 283, 24489-24496. https://doi.org/10.1074/jbc.M801812200.
Kiefer, D., & Kuhn, A. (2018). YidC-mediated membrane insertion. FEMS Microbiology Letters, 365, fny106. https://doi.org/10.1093/femsle/fny106.
Kim, S. J., Jansson, S., Hoffman, N. E., Robinson, C., & Mant, A. (1999). Distinct "assisted" and "spontaneous" mechanisms for the insertion of polytopic chlorophyll-binding proteins into the thylakoid membrane. Journal of Biological Chemistry, 274, 4715-4721. https://doi.org/10.1074/jbc.274.8.4715.
Klemm, P., Tong, S., Nielsen, H., & Conway, T. (1996). The gntP gene of Escherichia coli involved in gluconate uptake. Journal of Bacteriology, 178, 61-67. https://doi.org/10.1128/jb.178.1.61-67.1996.
Koch, H. G., Hengelage, T., Neumann-Haefelin, C., MacFarlane, J., Hoffschulte, H. K., Schimz, K. L., Mechler, B., & Muller, M. (1999). In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Molecular Biology of the Cell, 10, 2163-2173.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0.
Liu, X., Yin, Y., Wu, J., & Liu, Z. (2014). Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nature Communications, 5, 4244. https://doi.org/10.1038/ncomms5244.
Nishiyama, K., Ikegami, A., Moser, M., Schiltz, E., Tokuda, H., & Muller, M. (2006). A derivative of lipid A is involved in signal recognition particle/SecYEG-dependent and -independent membrane integrations. Journal of Biological Chemistry, 281, 35667-35676. https://doi.org/10.1074/jbc.M608228200.
Nishiyama, K., Maeda, M., Abe, M., Kanamori, T., Shimamoto, K., Kusumoto, S., Ueda, T., & Tokuda, H. (2010). A novel complete reconstitution system for membrane integration of the simplest membrane protein. Biochemical and Biophysical Research Communications, 394, 733-736. https://doi.org/10.1016/j.bbrc.2010.03.061.
Nishiyama, K., Maeda, M., Yanagisawa, K., Nagase, R., Komura, H., Iwashita, T., Yamagaki, T., Kusumoto, S., Tokuda, H., & Shimamoto, K. (2012). MPIase is a glycolipozyme essential for membrane protein integration. Nature Communications, 3, 1260. https://doi.org/10.1038/ncomms2267.
Nishiyama, K., Mizushima, S., & Tokuda, H. (1992). The carboxyl-terminal region of SecE interacts with SecY and is functional in the reconstitution of protein translocation activity in Escherichia coli. Journal of Biological Chemistry, 267, 7170-7176. https://doi.org/10.1016/S0021-9258(19)50553-1.
Nishiyama, K., & Shimamoto, K. (2014). Glycolipozyme membrane protein integrase (MPIase): Recent data. Biomolecular Concepts, 5, 429-438. https://doi.org/10.1515/bmc-2014-0030.
Nishiyama, K., Suzuki, T., & Tokuda, H. (1996). Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell, 85, 71-81. https://doi.org/10.1016/S0092-8674(00)81083-1.
Nozaki, S., & Niki, H. (2019). Exonuclease III (XthA) enforces in vivo DNA cloning of Escherichia coli to create cohesive ends. Journal of Bacteriology, 201, e00660-18.
Roy, S., Patra, T., Golder, T., Chatterjee, S., Koley, H., & Nandy, R. K. (2016). Characterization of the gluconate utilization system of Vibrio cholerae with special reference to virulence modulation. Pathog Dis, 74, ftw085.
Sanders, C. R. 2nd, Czerski, L., Vinogradova, O., Badola, P., Song, D., & Smith, S. O. (1996). Escherichia coli diacylglycerol kinase is an alpha-helical polytopic membrane protein and can spontaneously insert into preformed lipid vesicles. Biochemistry, 35, 8610-8618.
Sasaki, M., Nishikawa, H., Suzuki, S., Moser, M., Huber, M., Sawasato, K., Matsubayashi, H. T., Kumazaki, K., Tsukazaki, T., Kuruma, Y., Nureki, O., Ueda, T., & Nishiyama, K. I. (2019). The bacterial protein YidC accelerates MPIase-dependent integration of membrane proteins. Journal of Biological Chemistry, 294, 18898-18908. https://doi.org/10.1074/jbc.RA119.011248.
Sato, R., Sawasato, K., & Nishiyama, K. (2019). YnbB is a CdsA paralogue dedicated to biosynthesis of glycolipid MPIase involved in membrane protein integration. Biochemical and Biophysical Research Communications, 510, 636-642. https://doi.org/10.1016/j.bbrc.2019.01.145.
Sawasato, K., Sato, R., Nishikawa, H., Iimura, N., Kamemoto, Y., Fujikawa, K., Yamaguchi, T., Kuruma, Y., Tamura, Y., Endo, T., Ueda, T., Shimamoto, K., & Nishiyama, K. (2019). CdsA is involved in biosynthesis of glycolipid MPIase essential for membrane protein integration in vivo. Scientific Reports, 9, 1372. https://doi.org/10.1038/s41598-018-37809-8.
Sawasato, K., Sekiya, Y., & Nishiyama, K. I. (2019). Two-step induction of cdsA promoters leads to upregulation of the glycolipid MPIase at cold temperature. FEBS Letters, 593, 1711-1723.
Sawasato, K., Suzuki, S., & Nishiyama, K. (2019). Increased expression of the bacterial glycolipid MPIase is required for efficient protein translocation across membranes in cold conditions. Journal of Biological Chemistry, 294, 8403-8411. https://doi.org/10.1074/jbc.RA119.008457.
Shen, H., Heacock, P. N., Clancey, C. J., & Dowhan, W. (1996). The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth. Journal of Biological Chemistry, 271, 789-795. https://doi.org/10.1074/jbc.271.2.789.
Shibui, T., Uchida, M., & Teranishi, Y. (1988). A new hybrid promoter and its expression vector in Escherichia coli. Agricultural and Biological Chemistry, 52, 983-988. https://doi.org/10.1271/bbb1961.52.983.
Shimizu, H., Nishiyama, K., & Tokuda, H. (1997). Expression of gpsA encoding biosynthetic sn-glycerol 3-phosphate dehydrogenase suppresses both the LB- phenotype of a secB null mutant and the cold-sensitive phenotype of a secG null mutant. Molecular Microbiology, 26, 1013-1021.
Sparrow, C. P., & Raetz, C. R. (1985). Purification and properties of the membrane-bound CDP-diglyceride synthetase from Escherichia coli. Journal of Biological Chemistry, 260, 12084-12091. https://doi.org/10.1016/S0021-9258(17)38989-5.
Tamura, Y., Harada, Y., Nishikawa, S., Yamano, K., Kamiya, M., Shiota, T., Kuroda, T., Kuge, O., Sesaki, H., Imai, K., Tomii, K., & Endo, T. (2013). Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metabolism, 17, 709-718. https://doi.org/10.1016/j.cmet.2013.03.018.
Tamura, Y., Harada, Y., Yamano, K., Watanabe, K., Ishikawa, D., Ohshima, C., Nishikawa, S., Yamamoto, H., & Endo, T. (2006). Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria. Journal of Cell Biology, 174, 631-637. https://doi.org/10.1083/jcb.200603087.
Weeks, R., Dowhan, W., Shen, H., Balantac, N., Meengs, B., Nudelman, E., & Leung, D. W. (1997). Isolation and expression of an isoform of human CDP-diacylglycerol synthase cDNA. DNA and Cell Biology, 16, 281-289. https://doi.org/10.1089/dna.1997.16.281.
Wimley, W. C., & White, S. H. (1996). Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Natural Structural Biology, 3, 842-848. https://doi.org/10.1038/nsb1096-842.
Workman, S. D., Worrall, L. J., & Strynadka, N. C. J. (2018). Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling. Nature Communications, 9, 1159. https://doi.org/10.1038/s41467-018-03547-8.
معلومات مُعتمدة: 15KT0073 Japan Society for the Promotion of Science; 16H01374 Japan Society for the Promotion of Science; 16K15083 Japan Society for the Promotion of Science; 17H02209 Japan Society for the Promotion of Science; 18KK0197 Japan Society for the Promotion of Science
فهرسة مساهمة: Keywords: Arabidopsis thaliana; E. coli; CDP-DAG synthase; Cds4/5; CdsA; MPIase; chloroplasts; membrane protein integration; phospholipid biosynthesis; transmembrane stretch
المشرفين على المادة: 0 (Arabidopsis Proteins)
0 (Escherichia coli Proteins)
EC 2.7.8.2 (Diacylglycerol Cholinephosphotransferase)
تواريخ الأحداث: Date Created: 20210624 Date Completed: 20211228 Latest Revision: 20211228
رمز التحديث: 20231215
DOI: 10.1111/gtc.12880
PMID: 34166546
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2443
DOI:10.1111/gtc.12880