دورية أكاديمية

Pleistocene origins, western ghost lineages, and the emerging phylogeographic history of the red wolf and coyote.

التفاصيل البيبلوغرافية
العنوان: Pleistocene origins, western ghost lineages, and the emerging phylogeographic history of the red wolf and coyote.
المؤلفون: Sacks BN; Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA., Mitchell KJ; Australian Centre for Ancient DNA (ACAD) and ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia., Quinn CB; Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA., Hennelly LM; Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA., Sinding MS; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark., Statham MJ; Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA., Preckler-Quisquater S; Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA., Fain SR; National Fish & Wildlife Forensic Laboratory, Ashland, OR, USA., Kistler L; Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA., Vanderzwan SL; Mammalian Ecology and Conservation Unit/Veterinary Genetics Laboratory and Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA., Meachen JA; Anatomy Department, Des Moines University, Des Moines, IA, USA., Ostrander EA; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Frantz LAF; Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany.; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
المصدر: Molecular ecology [Mol Ecol] 2021 Sep; Vol. 30 (17), pp. 4292-4304. Date of Electronic Publication: 2021 Jul 07.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Coyotes*/genetics , Wolves*/genetics, Animals ; Ecosystem ; Hybridization, Genetic ; Phylogeography
مستخلص: The red wolf (Canis rufus) of the eastern US was driven to near-extinction by colonial-era persecution and habitat conversion, which facilitated coyote (C. latrans) range expansion and widespread hybridization with red wolves. The observation of some grey wolf (C. lupus) ancestry within red wolves sparked controversy over whether it was historically a subspecies of grey wolf with its predominant "coyote-like" ancestry obtained from post-colonial coyote hybridization (2-species hypothesis) versus a distinct species closely related to the coyote that hybridized with grey wolf (3-species hypothesis). We analysed mitogenomes sourced from before the 20th century bottleneck and coyote invasion, along with hundreds of modern amplicons, which led us to reject the 2-species model and to investigate a broader phylogeographic 3-species model suggested by the fossil record. Our findings broadly support this model, in which red wolves ranged the width of the American continent prior to arrival of the grey wolf to the mid-continent 60-80 ka; red wolves subsequently disappeared from the mid-continent, relegated to California and the eastern forests, which ushered in emergence of the coyote in their place (50-30 ka); by the early Holocene (12-10 ka), coyotes had expanded into California, where they admixed with and phenotypically replaced western red wolves in a process analogous to the 20th century coyote invasion of the eastern forests. Findings indicate that the red wolf pre-dated not only European colonization but human, and possibly coyote, presence in North America. These findings highlight the urgency of expanding conservation efforts for the red wolf.
(© 2021 John Wiley & Sons Ltd.)
References: Bandelt, H.-J., Forster, P., Sykes, B. C., & Richards, M. B. (1995). Mitochondrial portraits of human populations using median networks. Genetics, 141(2), 743-753. https://doi.org/10.1093/genetics/141.2.743.
Chambers, S. M., Fain, S. R., Fazio, B., & Amaral, M. (2012). An account of the taxonomy of North American wolves from morphological and genetic analyses. North American Fauna, 77(1), 1-67. https://doi.org/10.3996/nafa.77.0001.
Chavez, D. E., Gronau, I., Hains, T., Kliver, S., Koepfli, K.-P., & Wayne, R. K. (2019). Comparative genomics provides new insights into the remarkable adaptations of the African wild dog (Lycaon pictus). Scientific Reports, 9(1), 1-14. https://doi.org/10.1038/s41598-019-44772-5.
Cronon, W. (1983). Changes in the land: Indians. In Colonists, and the ecology of New England (p. 1-142). Hill and Wang.
Dierckxsens, N., Mardulyn, P., & Smits, G. (2017). NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4), e18.
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 1-8. https://doi.org/10.1186/1471-2148-7-214.
Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5), 1185-1192. https://doi.org/10.1093/molbev/msi103.
Gittleman, J. L., & Pimm, S. L. (1991). Crying wolf in North America. Nature, 351(6327), 524-525.
Goldman, E. (1936). A new coyote from Honduras. Journal of the Washington Academy of Sciences, 26(1), 32-34.
Heppenheimer, E., Brzeski, K. E., Hinton, J. W., Chamberlain, M. J., Robinson, J., Wayne, R. K., & vonHoldt, B. M. (2020). A Genome-wide perspective on the persistence of red wolf ancestry in southeastern canids. Journal of Heredity, 111(3), 277-286. https://doi.org/10.1093/jhered/esaa006.
Heppenheimer, E., Brzeski, K., Wooten, R., Waddell, W., Rutledge, L., Chamberlain, M., Stahler, D., Hinton, J., & vonHoldt, B. (2018). Rediscovery of red wolf ghost alleles in a canid population along the American Gulf Coast. Genes, 9(12), 618. https://doi.org/10.3390/genes9120618.
Heppenheimer, E., Harrigan, R. J., Rutledge, L. Y., Koepfli, K.-P., DeCandia, A. L., Brzeski, K. E., Benson, J. F., Wheeldon, T., Patterson, B. R., Kays, R., Hohenlohe, P. A., & von Holdt, B. M. (2018). Population genomic analysis of North American eastern wolves (Canis lycaon) supports their conservation priority status. Genes, 9(12), 606. https://doi.org/10.3390/genes9120606.
Hey, J., & Nielsen, R. (2007). Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences of the United States of America, 104(8), 2785-2790. https://doi.org/10.1073/pnas.0611164104.
Hidalgo-Mihart, M. G., Cantú-Salazar, L., González-Romero, A., & López-González, C. A. (2004). Historical and present distribution of coyote (Canis latrans) in Mexico and Central America. Journal of Biogeography, 31(12), 2025-2038. https://doi.org/10.1111/j.1365-2699.2004.01163.x.
Hinton, J. W., Heppenheimer, E., West, K. M., Caudill, D., Karlin, M. L., Kilgo, J. C., Mayer, J. J., Miller, K. V., Walch, M., vonHoldt, B., & Chamberlain, M. J. (2019). Geographic patterns in morphometric and genetic variation for coyote populations with emphasis on southeastern coyotes. Ecology and Evolution, 9(6), 3389-3404. https://doi.org/10.1002/ece3.4966.
Hody, J. W., & Kays, R. (2018). Mapping the expansion of coyotes (Canis latrans) across North and Central America. ZooKeys, 759, 81-97. https://doi.org/10.3897/zookeys.759.15149.
Ingman, M., & Gyllensten, U. (2001). Analysis of the complete human mtDNA genome: Methodology and inferences for human evolution. Journal of Heredity, 92(6), 454-461. https://doi.org/10.1093/jhered/92.6.454.
Koepfli, K.-P., Pollinger, J., Godinho, R., Robinson, J., Lea, A., Hendricks, S., Schweizer, R. M., Thalmann, O., Silva, P., Fan, Z., Yurchenko, A. A., Dobrynin, P., Makunin, A., Cahill, J. A., Shapiro, B., Álvares, F., Brito, J. C., Geffen, E., Leonard, J. A., … Wayne, R. K. (2015). Genome-wide evidence reveals that African and Eurasian golden jackals are distinct species. Current Biology, 25(16), 2158-2165. https://doi.org/10.1016/j.cub.2015.06.060.
Kurtén, B. (1974). A history of coyote-like dogs (Canidae, Mammalia). Acta Zoologica Fennica, 140, 1-38.
Lawrence, B., & Bossert, W. H. (1967). Multiple character analysis of Canis lupus, latrans, and familiaris, with a discussion of the relationships of Canis niger. American Zoologist, 7(2), 223-232. https://doi.org/10.1093/icb/7.2.223.
Lehman, N., Eisenhawer, A., Hansen, K., Mech, L. D., Peterson, R. O., Gogan, P. J., & Wayne, R. K. (1991). Introgression of coyote mitochondrial DNA into sympatric North American gray wolf populations. Evolution, 45(1), 104-119. https://doi.org/10.1111/j.1558-5646.1991.tb05270.x.
Loog, L., Thalmann, O., Sinding, M.-H., Schuenemann, V. J., Perri, A., Germonpré, M., Bocherens, H., Witt, K. E., Samaniego Castruita, J. A., Velasco, M. S., Lundstrøm, I. K. C., Wales, N., Sonet, G., Frantz, L., Schroeder, H., Budd, J., Jimenez, E.-L., Fedorov, S., Gasparyan, B., … Manica, A. (2020). Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Molecular Ecology, 29(9), 1596-1610. https://doi.org/10.1111/mec.15329.
Macaulay, V., Soares, P., & Richards, M. B. (2019). Rectifying long-standing misconceptions about the ρ statistic for molecular dating. PLoS One, 14(2), e0212311. https://doi.org/10.1371/journal.pone.0212311.
McCarley, H. (1962). The taxonomic status of wild Canis (Canidae) in the south central United States. The Southwestern Naturalist, 7, 227-235. https://doi.org/10.2307/3668845.
Meachen, J. A., Brannick, A. L., & Fry, T. J. (2016). Extinct Beringian wolf morphotype found in the continental US has implications for wolf migration and evolution. Ecology and Evolution, 6(10), 3430-3438.
Meachen, J. A., & Samuels, J. X. (2012). Evolution in coyotes (Canis latrans) in response to the megafaunal extinctions. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4191-4196. https://doi.org/10.1073/pnas.1113788109.
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Paper presented at the 2010 gateway computing environments workshop (GCE).
Murphy, S. M., Adams, J. R., Cox, J. J., & Waits, L. P. (2019). Substantial red wolf genetic ancestry persists in wild canids of southwestern Louisiana. Conservation Letters, 12(2), e12621. https://doi.org/10.1111/conl.12621.
National Academies of Sciences, Engineering, and Medicine. (2019). Evaluating the taxonomic status of the Mexican gray wolf and the red wolf. National Academies Press.
National Academies of Sciences, Engineering, and Medicine. (2020). A research strategy to examine the taxonomy of the red wolf. The National Academies Press.
Nowak, R. M. (1979). North American Quaternary Canis (Vol. 6, pp. 1-154). Museum of Natural History, University of Kansas.
Nowak, R. M. (2002). The original status of wolves in eastern North America. Southeastern Naturalist, 1(2), 95-130.
Perini, F. A., Russo, C., & Schrago, C. G. (2010). The evolution of South American endemic canids: A history of rapid diversification and morphological parallelism. Journal of Evolutionary Biology, 23(2), 311-322. https://doi.org/10.1111/j.1420-9101.2009.01901.x.
Phillips, M., Smith, R., Henry, V., & Lucash, C. (1995). Red wolf reintroduction program. In L. Carbyn, S. Fritts, & D. Seip (Eds.), Ecology and conservation of wolves in a changing world (Vol. 35, pp. 157-168). Canadian Circumpolar Institute.
Roy, M. S., Geffen, E., Smith, D., & Wayne, R. K. (1996). Molecular genetics of pre-1940 red wolves. Conservation Biology, 10(5), 1413-1424. https://doi.org/10.1046/j.1523-1739.1996.10051413.x.
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248.
Rutledge, L., Devillard, S., Boone, J., Hohenlohe, P., & White, B. (2015). RAD sequencing and genomic simulations resolve hybrid origins within North American Canis. Biology Letters, 11(7), 20150303.
Sinding, M.-H., Gopalakrishan, S., Vieira, F. G., Samaniego Castruita, J. A., Raundrup, K., Heide Jørgensen, M. P., Meldgaard, M., Petersen, B., Sicheritz-Ponten, T., Mikkelsen, J. B., Marquard-Petersen, U., Dietz, R., Sonne, C., Dalén, L., Bachmann, L., Wiig, Ø., Hansen, A. J., & Gilbert, M. T. P. (2018). Population genomics of grey wolves and wolf-like canids in North America. PLoS Genetics, 14(11), e1007745. https://doi.org/10.1371/journal.pgen.1007745.
Subramanian, S., & Lambert, D. M. (2011). Time dependency of molecular evolutionary rates? Yes and no. Genome Biology and Evolution, 3, 1324-1328. https://doi.org/10.1093/gbe/evr108.
vonHoldt, B. M., Cahill, J. A., Fan, Z., Gronau, I., Robinson, J., Pollinger, J. P., Shapiro, B., Wall, J., & Wayne, R. K. (2016). Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Science Advances, 2(7), e1501714. https://doi.org/10.1126/sciadv.1501714.
Waples, R. S., Kays, R., Fredrickson, R. J., Pacifici, K., & Mills, L. S. (2018). Is the red wolf a listable unit under the US Endangered Species Act? Journal of Heredity, 109(5), 585-597. https://doi.org/10.1093/jhered/esy020.
Wayne, R. K., & Jenks, S. M. (1991). Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf Canis rufus. Nature, 351(6327), 565-568.
Wheeldon, T., & White, B. N. (2009). Genetic analysis of historic western Great Lakes region wolf samples reveals early Canis lupus/lycaon hybridization. Biology Letters, 5(1), 101-104.
Wilson, P. J., Grewal, S., Lawford, I. D., Heal, J. N. M., Granacki, A. G., Pennock, D., Theberge, J. B., Theberge, M. T., Voigt, D. R., Waddell, W., Chambers, R. E., Paquet, P. C., Goulet, G., Cluff, D., & White, B. N. (2000). DNA profiles of the eastern Canadian wolf and the red wolf provide evidence for a common evolutionary history independent of the gray wolf. Canadian Journal of Zoology, 78(12), 2156-2166. https://doi.org/10.1139/z00-158.
Wilson, P. J., Grewal, S. K., Mallory, F. F., & White, B. N. (2009). Genetic characterization of hybrid wolves across Ontario. Journal of Heredity, 100(suppl_1), S80-S89. https://doi.org/10.1093/jhered/esp034.
Young, S. P., & Goldman, E. A. (1944). The Wolves of North America: Their history, life habits, economic status, and control, by SP Young (Vol. 1). Dover Publications.
معلومات مُعتمدة: 210119/Z/18/Z United Kingdom WT_ Wellcome Trust
فهرسة مساهمة: Keywords: Canis; evolution; hybridization; mitogenome; phylogeography; red wolf
تواريخ الأحداث: Date Created: 20210628 Date Completed: 20210906 Latest Revision: 20210906
رمز التحديث: 20240628
DOI: 10.1111/mec.16048
PMID: 34181791
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.16048