دورية أكاديمية

Overexpression of differentially expressed AhCytb6 gene during plant-microbe interaction improves tolerance to N 2 deficit and salt stress in transgenic tobacco.

التفاصيل البيبلوغرافية
العنوان: Overexpression of differentially expressed AhCytb6 gene during plant-microbe interaction improves tolerance to N 2 deficit and salt stress in transgenic tobacco.
المؤلفون: Alexander A; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.; Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India., Singh VK; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.; Department of Microbiology, Harvard Medical School, Boston, MA, USA.; Department of Surgery, Massachusetts General Hospital, Boston, MA, USA., Mishra A; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India. avinash@csmcri.res.in.; Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India. avinash@csmcri.res.in.
المصدر: Scientific reports [Sci Rep] 2021 Jun 28; Vol. 11 (1), pp. 13435. Date of Electronic Publication: 2021 Jun 28.
نوع المنشور: Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Gene Expression Regulation, Plant* , Genes, Plant*, Arachis/*genetics , Cytochromes b6/*genetics , Nitrogen/*deficiency , Nitrogen Fixation/*genetics , Plant Proteins/*genetics , Salt Stress/*genetics , Stenotrophomonas maltophilia/*physiology , Symbiosis/*genetics , Nicotiana/*genetics, Arachis/enzymology ; Biomass ; Climate Change ; Computer Simulation ; Cytochromes b6/physiology ; Models, Genetic ; Nitrogen/metabolism ; Photosynthesis ; Plant Proteins/physiology ; Plants, Genetically Modified ; Recombinant Proteins/biosynthesis ; Recombinant Proteins/genetics ; Nicotiana/enzymology ; Nicotiana/growth & development ; Nicotiana/microbiology ; Up-Regulation
مستخلص: Stenotrophomonas maltophilia has plant growth-promoting potential, and interaction with Arachis hypogaea changes host-plant physiology, biochemistry, and metabolomics, which provides tolerance under the N 2 starvation conditions. About 226 suppression subtractive hybridization clones were obtained from plant-microbe interaction, of which, about 62% of gene sequences were uncharacterized, whereas 23% of sequences were involved in photosynthesis. An uncharacterized SSH clone, SM409 (full-length sequence showed resemblance with Cytb6), showed about 4-fold upregulation during the interaction was transformed to tobacco for functional validation. Overexpression of the AhCytb6 gene enhanced the seed germination efficiency and plant growth under N 2 deficit and salt stress conditions compared to wild-type and vector control plants. Results confirmed that transgenic lines maintained high photosynthesis and protected plants from reactive oxygen species buildup during stress conditions. Microarray-based whole-transcript expression of host plants showed that out of 272,410 genes, 8704 and 24,409 genes were significantly (p < 0.05) differentially expressed (> 2 up or down-regulated) under N 2 starvation and salt stress conditions, respectively. The differentially expressed genes belonged to different regulatory pathways. Overall, results suggested that overexpression of AhCytb6 regulates the expression of various genes to enhance plant growth under N 2 deficit and abiotic stress conditions by modulating plant physiology.
References: Van Loon, L. C. Plant responses to plant growth-promoting rhizobacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research (eds Bakker, P. A. H. M. et al.) 243–254 (Springer, 2007). (PMID: 10.1007/978-1-4020-6776-1_2)
Vessey, J. K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255, 571–586 (2003). (PMID: 10.1023/A:1026037216893)
Van Wees, S. C., Van der Ent, S. & Pieterse, C. M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448 (2008). (PMID: 1858595510.1016/j.pbi.2008.05.005)
Stringlis, I. A. et al. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J. 93, 166–180 (2018). (PMID: 2902417310.1111/tpj.13741)
Field, C. B. Managing the risks of extreme events and disasters to advance climate change adaptation. In Special Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 1–582 (Cambridge University Press, 2012).
Sinclair, T. R. & Vadez, V. Physiological traits for crop yield improvement in low N and P environments. Plant Soil. 245, 1–15 (2002). (PMID: 10.1023/A:1020624015351)
Tate, R. L. Soil Microbiology 2nd edn. (Wiley, 2000).
Lian, X. et al. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol. Biol. 60, 617–631 (2006). (PMID: 1664910210.1007/s11103-005-5441-7)
Zhu, G. H., Zhuang, C. X., Wang, Y. Q., Jiang, L. R. & Peng, X. X. Differential expression of rice genes under different nitrogen forms and their relationship with sulfur metabolism. J. Integr. Plant Biol. 48, 1177–1184 (2006). (PMID: 10.1111/j.1744-7909.2006.00332.x)
Liu, T., Ren, T., White, P. J., Cong, R. & Lu, J. Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape. J. Exp. Bot. 69, 2995–3007 (2018). (PMID: 29669007597256610.1093/jxb/ery134)
Fabra, A. et al. Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: How much is it known?. Crit. Rev. Microbiol. 36, 179–194 (2010). (PMID: 2021441610.3109/10408410903584863)
Arora, S. Microbial approach for remediation and health management of salt affected soils. In Natural Resource Management in Arid and Semi-arid Ecosystem for Climate Resilient Agriculture (eds Pareek, N. K. & Arora, S.) (Soil Conservation Society of India, New Delhi, 2016).
Bhattacharyya, P. N. & Jha, D. K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327–1350 (2012). (PMID: 2280591410.1007/s11274-011-0979-9)
Deshmukh, Y., Khare, P. & Patra, D. Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety. Rhizosphere. 1, 53–57 (2016). (PMID: 10.1016/j.rhisph.2016.07.001)
Etesami, H. & Alikhani, H. A. Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere. 2, 5–12 (2016). (PMID: 10.1016/j.rhisph.2016.09.003)
De Vleesschauwer, D., Cornelis, P. & Höfte, M. Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol. Plant Microbe Int. 19, 1406–1419 (2006). (PMID: 10.1094/MPMI-19-1406)
Ahkami, A. H., White, R. A. III., Handakumbura, P. P. & Jansson, C. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere 3, 233–243 (2017). (PMID: 10.1016/j.rhisph.2017.04.012)
Singh, V. K., Kavita, K., Prabhakaran, R. & Jha, B. Cis-9-octadecenoic acid from the rhizospheric bacterium Stenotrophomonas maltophilia BJ01 shows quorum quenching and anti-biofilm activities. Biofouling. 29, 855–867 (2013). (PMID: 2384480510.1080/08927014.2013.807914)
Alexander, A., Singh, V. K., Mishra, A. & Jha, B. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N 2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PloS One 14, 9 (2019). (PMID: 10.1371/journal.pone.0222405)
Alexander, A., Singh, V. K. & Mishra, A. Halotolerant PGPR Stenotrophomonas maltophilia induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Front. Microbiol. 11, 2530 (2020). (PMID: 10.3389/fmicb.2020.568289)
Ruuska, S. A., Andrews, T. J., Badger, M. R., Price, G. D. & von Caemmerer, S. The role of chloroplast electron transport and metabolites in modulating Rubisco activity in tobacco. Insights from transgenic plants with reduced amounts of cytochrome b/fcomplex or glyceraldehyde 3-phosphate dehydrogenase. Plant Physiol. 122, 491–504 (2000). (PMID: 106774425888610.1104/pp.122.2.491)
Zhu, H. et al. The half-life of the cytochrome bf complex in leaves of pea plants after transfer from moderately-high growth light to low light. Funct. Plant Biol. 44, 351–357 (2017). (PMID: 3248056910.1071/FP16222)
Lande, N. V. et al. Dehydration-induced alterations in chloroplast proteome and reprogramming of cellular metabolism in developing chickpea delineate interrelated adaptive responses. Plant Physiol. Biochem. 146, 337–348 (2020). (PMID: 3178552010.1016/j.plaphy.2019.11.034)
Chida, H. et al. Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol. 48, 948–957 (2007). (PMID: 1754837410.1093/pcp/pcm064)
Hura, T. et al. Rieske iron-sulfur protein of cytochrome-b6f is involved in plant recovery after drought stress. Environ. Exp. Bot. 156, 228–239 (2018). (PMID: 10.1016/j.envexpbot.2018.09.003)
Ermakova, M., Lopez-Calcagno, P. E., Raines, C. A., Furbank, R. T. & von Caemmerer, S. Overexpression of the Rieske FeS protein of the Cytochromeb6f complex increases C 4 photosynthesis in Setaria viridis. Commun. Biol. 2, 1–12 (2019). (PMID: 10.1038/s42003-019-0561-9)
Alexander, A., Mishra, A. & Jha, B. Halotolerant rhizobacteria: A promising probiotic for saline soil-based agriculture. In Saline Soil-Based Agriculture by Halotolerant Microorganisms (eds Kumar, M. et al.) 53–73 (Springer, 2019). https://doi.org/10.1007/978-981-13-8335-9&#95;3 . (PMID: 10.1007/978-981-13-8335-9_3)
Diatchenko, L. et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. 93, 6025–6030 (1996). (PMID: 86502133918210.1073/pnas.93.12.6025)
Jaiswal, P. et al. Differential transcript accumulation in chickpea during early phases of compatible interaction with a necrotrophic fungus Ascochyta rabiei. Mol. Biol. Rep. 39, 4635–4646 (2012). (PMID: 2195675510.1007/s11033-011-1255-7)
Shi, J. L., Wang, Y. J., Zhu, Z. G. & Zhang, C. H. The EST analysis of a suppressive subtraction cDNA library of Chinese Wild Vitis pseudoreticulata inoculated with Uncinula necator. Agric. Sci. China 9, 233–241 (2010). (PMID: 10.1016/S1671-2927(09)60088-2)
Fataftah, N., Mohr, C., Hajirezaei, M. R., von Wirén, N. & Humbeck, K. Changes in nitrogen availability lead to a reprogramming of pyruvate metabolism. BMC Plant Biol. 18, 77 (2018). (PMID: 29728053593597210.1186/s12870-018-1301-x)
Yang, Y. et al. Transcripts and low nitrogen tolerance: Regulatory and metabolic pathways in sugarcane under low nitrogen stress. Environ. Exp. Bot. 163, 97–111 (2019). (PMID: 10.1016/j.envexpbot.2019.04.010)
Curci, P. L. et al. Transcriptomic response of durum wheat to nitrogen starvation. Sci. Rep. 7, 1–14 (2017). (PMID: 10.1038/s41598-017-01377-0)
Qiao, G., Wen, X., Yu, L. & Ji, X. Identification of differentially expressed genes preferably related to drought response in pigeon pea (Cajanus cajan) inoculated by arbuscular mycorrhizae fungi (AMF). Acta Physiol. Plant. 34, 1711–1721 (2012). (PMID: 10.1007/s11738-012-0966-2)
Dyda, M., Wąsek, I., Tyrka, M., Wędzony, M. & Szechyńska-Hebda, M. Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochium nivale. Physiol. Plantarum. 165, 711–727 (2019). (PMID: 10.1111/ppl.12760)
Joaquín-Ramos, A. et al. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress. J. Plant Physiol. 171, 1423–1435 (2014). (PMID: 2504676310.1016/j.jplph.2014.06.006)
Yuan, S. et al. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol. 169, 576–593 (2015). (PMID: 26224802457742510.1104/pp.15.00899)
Ben-Romdhane, W. et al. Overexpression of AlTMP2 gene from the halophyte grass Aeluropus littoralis in transgenic tobacco enhances tolerance to different abiotic stresses by improving membrane stability and deregulating some stress-related genes. Protoplasma. 255, 1161–1177 (2018). (PMID: 2945075810.1007/s00709-018-1223-3)
Ashraf, M. F. M. R. & Foolad, M. R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216 (2007). (PMID: 10.1016/j.envexpbot.2005.12.006)
Krasensky, J. & Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63, 1593–1608 (2012). (PMID: 2229113410.1093/jxb/err460)
Zhang, J. et al. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. https://doi.org/10.1155/2016/4350965 (2016). (PMID: 10.1155/2016/4350965280580885183793)
Lushchak, V. I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Phys. C. 153, 175–190 (2011).
Shi, K. et al. Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: The state of the art and future perspectives. Front. Microbiol. 8, 793 (2017). (PMID: 28507542541059210.3389/fmicb.2017.00793)
Møller, I. M. & Sweetlove, L. J. ROS signalling–specificity is required. Trends Plant Sci. 15, 370–374 (2010). (PMID: 2060573610.1016/j.tplants.2010.04.008)
Yang, S. et al. Peanut genes encoding tetrapyrrole biosynthetic enzymes, AhHEMA1 and AhFC1, alleviating the salt stress in transgenic tobacco. Plant Physiol. Biochem. 137, 14–24 (2019). (PMID: 3071079510.1016/j.plaphy.2019.01.027)
Ali, Y., Aslam, Z., Ashraf, M. Y. & Tahir, G. R. Effect of salinity on chlorophyll concentration, leaf area, yield, and yield components of rice genotypes grown under saline environment. Int. J. Environ. Sci. Technol. 1, 221–225 (2004). (PMID: 10.1007/BF03325836)
Rao, G. G. & Rao, G. R. Pigment composition and chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) under NaCl salinity. Indian J. Exp. Biol. 19, 768–770 (1981).
Moreno, J. C. et al. Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. Plant J. 103, 1967–1984 (2020). (PMID: 3262377710.1111/tpj.14909)
Kaiser, W. M., Stepper, W. & Urbach, W. Photosynthesis of isolated chloroplasts and protoplasts under osmotic stress. Planta. 151, 375–380 (1981). (PMID: 2430198210.1007/BF00393294)
Joshi, R., Karan, R., Singla-Pareek, S. L. & Pareek, A. Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Rep. 35, 27–41 (2016). (PMID: 2640814610.1007/s00299-015-1864-z)
Passricha, N., Saifi, S. K., Kharb, P. & Tuteja, N. Marker-free transgenic rice plant overexpressing pea LecRLK imparts salinity tolerance by inhibiting sodium accumulation. Plant Mol. Biol. 99, 265–281 (2019). (PMID: 3060432410.1007/s11103-018-0816-8)
Gao, S. et al. Wheat microRNA member TaMIR444a is nitrogen deprivation-responsive and involves plant adaptation to the nitrogen-starvation stress. Plant Mol. Biol. Rep. 34, 931–946 (2016). (PMID: 10.1007/s11105-016-0973-3)
Luo, J. et al. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol. 35, 1283–1302 (2015). (PMID: 2642078910.1093/treephys/tpv091)
Iqbal, A. et al. Transcriptome analysis reveals differences in key genes and pathways regulating carbon and nitrogen metabolism in cotton genotypes under n starvation and resupply. Int. J. Mol. Sci. 21, 1500 (2020). (PMID: 707309810.3390/ijms21041500)
Xin, W. et al. An integrated analysis of the rice transcriptome and metabolome reveals differential regulation of carbon and nitrogen metabolism in response to nitrogen availability. Int. J. Mol. Sci. 20, 2349 (2019). (PMID: 653948710.3390/ijms20092349)
Tiwari, V., Chaturvedi, A. K., Mishra, A. & Jha, B. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS One. 10(7), e0131567 (2015). (PMID: 26158616449767910.1371/journal.pone.0131567)
Mishra, A. & Jha, B. Cloning differentially expressed salt induced cDNAs from Dunaliella salina under super saturated salt stress using subtractive hybridization. Bot. Mar. 54, 189–193 (2011). (PMID: 10.1515/bot.2011.011)
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402–408 (2001). (PMID: 1184660910.1006/meth.2001.1262)
Horsch, R. B. et al. A simple and general method for transferring genes into plants. Science. 227, 1229–1231 (1985). (PMID: 10.1126/science.227.4691.1229)
Jha, B., Sharma, A. & Mishra, A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol. Biol. Rep. 38, 4823–4832 (2011). (PMID: 2113616910.1007/s11033-010-0625-x)
Singh, N., Mishra, A. & Jha, B. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene. 547, 119–125 (2014). (PMID: 2495453210.1016/j.gene.2014.06.037)
Singh, V. K., Mishra, A., Haque, I. & Jha, B. A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco. Sci. Rep. 6, 31686 (2016). (PMID: 27550641499404510.1038/srep31686)
Arnon, D. I. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949). (PMID: 1665419443790510.1104/pp.24.1.1)
Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996). (PMID: 10.1006/anbo.1996.0134)
Hayat, S., Yadav, S., Ali, B. & Ahmad, A. Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russ. J. Plant Physiol. 57, 212–221 (2010). (PMID: 10.1134/S1021443710020081)
Bates, L. S., Waldern, R. & Teare, I. D. Rapid determination of free proline for water stress studies. Plant Soil 39, 205–207 (1973). (PMID: 10.1007/BF00018060)
Hodgson, R. A. & Raison, J. K. Lipid peroxidation and superoxide dismutase activity in relation to photoinhibition induced by chilling in moderate light. Planta 185, 215–219 (1991). (PMID: 2418634410.1007/BF00194063)
Mukherjee, S. P. & Choudhuri, M. A. Implications of water stress-induced changes in the leaves of indigenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 58, 166–170 (1983). (PMID: 10.1111/j.1399-3054.1983.tb04162.x)
Shi, J. et al. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol. 30, 914–922 (2010). (PMID: 2046293610.1093/treephys/tpq030)
Jha, R. K., Patel, J., Patel, M. K., Mishra, A. & Jha, B. Introgression of a novel cold and drought regulatory-protein encoding CORA-like gene, SbCDR, induced osmotic tolerance in transgenic tobacco. Physiol Plant. https://doi.org/10.1111/ppl.13280 (2020). (PMID: 10.1111/ppl.1328033206416)
المشرفين على المادة: 0 (Cytochromes b6)
0 (Plant Proteins)
0 (Recombinant Proteins)
N762921K75 (Nitrogen)
تواريخ الأحداث: Date Created: 20210629 Date Completed: 20211108 Latest Revision: 20231213
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8239016
DOI: 10.1038/s41598-021-92424-4
PMID: 34183701
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-021-92424-4