دورية أكاديمية

The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding.

التفاصيل البيبلوغرافية
العنوان: The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding.
المؤلفون: White P; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.; GlaxoSmithKline R&D, Stevenage, UK., Haysom SF; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK., Iadanza MG; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.; Scientific Computing Department, Science and Technology Facilities Council, Didcot, UK., Higgins AJ; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK., Machin JM; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK., Whitehouse JM; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK., Horne JE; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.; Department of Biochemistry, University of Oxford, Oxford, UK., Schiffrin B; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK., Carpenter-Platt C; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK., Calabrese AN; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK., Storek KM; Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA., Rutherford ST; Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA., Brockwell DJ; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK., Ranson NA; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK. n.a.ranson@leeds.ac.uk., Radford SE; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK. s.e.radford@leeds.ac.uk.
المصدر: Nature communications [Nat Commun] 2021 Jul 07; Vol. 12 (1), pp. 4174. Date of Electronic Publication: 2021 Jul 07.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Protein Folding*, Bacterial Outer Membrane Proteins/*metabolism , Escherichia coli Proteins/*metabolism , Hydrolases/*metabolism , Liposomes/*metabolism, Bacterial Outer Membrane Proteins/genetics ; Bacterial Outer Membrane Proteins/isolation & purification ; Bacterial Outer Membrane Proteins/ultrastructure ; Cryoelectron Microscopy ; Dynamic Light Scattering ; Escherichia coli Proteins/genetics ; Escherichia coli Proteins/isolation & purification ; Escherichia coli Proteins/ultrastructure ; Hydrolases/genetics ; Hydrolases/isolation & purification ; Hydrolases/ultrastructure ; Lipid Metabolism ; Liposomes/ultrastructure ; Molecular Dynamics Simulation ; Protein Conformation, beta-Strand ; Proteolipids/metabolism ; Proteolipids/ultrastructure ; Recombinant Proteins/genetics ; Recombinant Proteins/isolation & purification ; Recombinant Proteins/metabolism ; Recombinant Proteins/ultrastructure
مستخلص: The folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.
References: Horne, J. E., Brockwell, D. J. & Radford, S. E. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J. Biol. Chem. 295, 10340–10367 (2020). (PMID: 32499369738336510.1074/jbc.REV120.011473)
Noinaj, N., Gumbart, J. C. & Buchanan, S. K. The β-barrel assembly machinery in motion. Nat. Rev. Microbiol. 15, 197–204 (2017). (PMID: 28216659545533710.1038/nrmicro.2016.191)
Konovalova, A., Kahne, D. E. & Silhavy, T. J. Outer membrane biogenesis. Annu. Rev. Microbiol. 71, 539–556 (2017). (PMID: 28886680577889710.1146/annurev-micro-090816-093754)
Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003). (PMID: 1252225410.1126/science.1078973)
Bakelar, J., Buchanan, S. K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016). (PMID: 26744406488309510.1126/science.aad3460)
Gu, Y. et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 64–69 (2016).
Han, L. et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat. Struct. Mol. Biol. 23, 192–196 (2016). (PMID: 2690087510.1038/nsmb.3181)
Iadanza, M. G. et al. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat. Commun. 7, 12865 (2016). (PMID: 27686148505644210.1038/ncomms12865)
Hart, E. M., Gupta, M., Wühr, M. & Silhavy, T. J. The synthetic phenotype of ΔBamB ΔBamE double mutants results from a lethal jamming of the BAM complex by the lipoprotein RcsF. MBio 10, e00662-19 (2019).
Tata, M. & Konovalova, A. Improper coordination of BamA and BamD results in BAM complex jamming by a lipoprotein substrate. MBio 10, e00660-19 (2019).
Luther, A. et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576, 452–458 (2019). (PMID: 3164576410.1038/s41586-019-1665-6)
Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019). (PMID: 31747680718831210.1038/s41586-019-1791-1)
Hart, E. M. et al. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc. Natl Acad. Sci. USA 116, 21748–21757 (2019). (PMID: 31591200681513910.1073/pnas.1912345116)
Urfer, M. et al. A peptidomimetic antibiotic targets outer membrane proteins and disrupts selectively the outer membrane in Escherichia coli. J. Biol. Chem. 291, 1921–1932 (2016). (PMID: 2662783710.1074/jbc.M115.691725)
Hagan, C. L., Wzorek, J. S. & Kahne, D. Inhibition of the β-barrel assembly machine by a peptide that binds BamD. Proc. Natl Acad. Sci. USA 112, 2011–2016 (2015). (PMID: 25646443434309010.1073/pnas.1415955112)
Storek, K. M. et al. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. Proc. Natl Acad. Sci. USA 115, 3692–3697 (2018). (PMID: 29555747588967110.1073/pnas.1800043115)
Kaur, H. et al. Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. J. Biomol. NMR 73, 375–384 (2019). (PMID: 3107366510.1007/s10858-019-00250-8)
Iadanza, M. G. et al. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Commun. Biol. 3, 766 (2020). (PMID: 33318620773630810.1038/s42003-020-01419-w)
Noinaj, N., Kuszak, A. J., Balusek, C., Gumbart, J. C. & Buchanan, S. K. Lateral opening and exit pore formation are required for BamA function. Structure 22, 1055–1062 (2014). (PMID: 24980798410058510.1016/j.str.2014.05.008)
Doerner, P. A. & Sousa, M. C. Extreme dynamics in the BamA β-barrel seam. Biochemistry 56, 3142–3149 (2017). (PMID: 2856950010.1021/acs.biochem.7b00281)
Rodríguez-Alonso, R. et al. Structural insight into the formation of lipoprotein-β-barrel complexes. Nat. Chem. Biol. 16, 1019–1025 (2020). (PMID: 32572278761036610.1038/s41589-020-0575-0)
Xiao, L. et al. Structures of the β-barrel assembly machine recognizing outer membrane protein substrates. FASEB J. 35, e21207 (2021). (PMID: 3336857210.1096/fj.202001443RR)
Warner, L. R., Gatzeva-Topalova, P. Z., Doerner, P. A., Pardi, A. & Sousa, M. C. Flexibility in the periplasmic domain of BamA is important for function. Structure 25, 94–106 (2017). (PMID: 2798962010.1016/j.str.2016.11.013)
Lundquist, K., Billings, E., Bi, M., Wellnitz, J. & Noinaj, N. The assembly of β-barrel membrane proteins by BAM and SAM. Mol. Microbiol. 115, 425–435 (2021).
Schiffrin, B., Brockwell, D. J. & Radford, S. E. Outer membrane protein folding from an energy landscape perspective. BMC Biol. 15, 123 (2017). (PMID: 29268734574092410.1186/s12915-017-0464-5)
Höhr, A. I. C. et al. Membrane protein insertion through a mitochondrial β-barrel gate. Science. 359, eaah6834 (2018).
Doyle, M. T. & Bernstein, H. D. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat. Commun. 10, 3358 (2019). (PMID: 31350400665967110.1038/s41467-019-11230-9)
Lee, J. et al. Formation of a β-barrel membrane protein is catalyzed by the interior surface of the assembly machine protein BamA. Elife 8, e49787 (2019).
Tomasek, D. et al. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 583, 473–478 (2020). (PMID: 32528179736771310.1038/s41586-020-2370-1)
Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013). (PMID: 23995689377947610.1038/nature12521)
Schiffrin, B. et al. Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. J. Mol. Biol. 429, 3776–3792 (2017). (PMID: 28919234569247610.1016/j.jmb.2017.09.008)
Liu, J. & Gumbart, J. C. Membrane thinning and lateral gating are consistent features of BamA across multiple species. PLoS Comput. Biol. 16, e1008355 (2020). (PMID: 33112853765228410.1371/journal.pcbi.1008355)
Patel, G. J. & Kleinschmidt, J. H. The lipid bilayer-inserted membrane protein BamA of Escherichia coli facilitates insertion and folding of outer membrane protein A from its complex with Skp. Biochemistry 52, 3794–3986 (2013). (PMID: 10.1021/bi400103t)
Gessmann, D. et al. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl Acad. Sci. USA 111, 5878–5883 (2014). (PMID: 24715731400085410.1073/pnas.1322473111)
Tiwari, P. B. & Mahalakshmi, R. Interplay of protein primary sequence, lipid membrane, and chaperone in β-barrel assembly. Protein Sci. 30, 624–627 (2021).
Rigel, N. W., Ricci, D. P. & Silhavy, T. J. Conformation-specific labelling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc. Natl Acad. Sci. USA 110, 5151–5156 (2013). (PMID: 23479609361260910.1073/pnas.1302662110)
Storek, K. M. et al. The Escherichia coli β-barrel assembly machinery is sensitized to perturbations under high membrane fluidity. J. Bacteriol. 201, e00517–e00518 (2019). (PMID: 3032285710.1128/JB.00517-18)
Schüßler, A., Herwig, S. & Kleinschmidt, J. H. Kinetics of insertion and folding of outer membrane proteins by gel electrophoresis. In Lipid–Protein Interactions. Methods in Molecular Biology, Vol. 2003 (ed. Kleinschmidt, J.) (Humana, 2019).
Hagan, C. L., Westwood, D. B. & Kahne, D. Bam lipoproteins assemble BamA in vitro. Biochemistry 52, 6108–6113 (2013). (PMID: 2391946110.1021/bi400865z)
Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008). (PMID: 18462672243073110.1016/j.str.2008.03.005)
Krissinel, E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res. 43, W314–W319 (2015). (PMID: 25908787448931310.1093/nar/gkv314)
Kleinschmidt, J. H. Folding of β-barrel membrane proteins in lipid bilayers—unassisted and assisted folding and insertion. Biochim. Biophys. Acta - Biomembr. 1848, 1927–1943 (2015). (PMID: 10.1016/j.bbamem.2015.05.004)
Burgess, N. K., Dao, T. P., Stanley, A. M. & Fleming, K. G. β-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J. Biol. Chem. 283, 26748–26758 (2008). (PMID: 18641391325891910.1074/jbc.M802754200)
Andersen, K. K., Wang, H. & Otzen, D. E. A kinetic analysis of the folding and unfolding of OmpA in urea and guanidinium chloride: single and parallel pathways. Biochemistry 51, 8371–8383 (2012). (PMID: 2299217810.1021/bi300974y)
Danoff, E. J. & Fleming, K. G. Membrane defects accelerate outer membrane β-barrel protein folding. Biochemistry 54, 97–99 (2015). (PMID: 2551389110.1021/bi501443p)
Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R. M. & Gratton, E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys. J. 60, 179–189 (1991). (PMID: 1883937126004910.1016/S0006-3495(91)82041-0)
Bonora, S., Markarian, S. A., Trinchero, A. & Grigorian, K. R. DSC study on the effect of dimethysulfoxide (DMSO) and diethylsulfoxide (DESO) on phospholipid liposomes. Thermochim. Acta 433, 19–26 (2005). (PMID: 10.1016/j.tca.2005.02.011)
Hussain, S. & Bernstein, H. D. The Bam complex catalyzes efficient insertion of bacterial outer membrane proteins into membrane vesicles of variable lipid composition. J. Biol. Chem. 293, 2959–2973 (2018). (PMID: 29311257582743310.1074/jbc.RA117.000349)
Humes, J. R. et al. The role of SurA PPIase domains in preventing aggregation of the outer membrane proteins tOmpA and OmpT. J. Mol. Biol. 431, 1267–1283 (2019). (PMID: 3071633410.1016/j.jmb.2019.01.032)
Calabrese, A. N. et al. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat. Commun. 11, 1–16 (2020). (PMID: 10.1038/s41467-020-15702-1)
Konovalova, A. et al. Inhibitor of intramembrane protease RseP blocks the σE response causing lethal accumulation of unfolded outer membrane proteins. Proc. Natl Acad. Sci. USA 115, E6614–E6621 (2018). (PMID: 29941590604850310.1073/pnas.1806107115)
Dartigalongue, C., Missiakas, D. & Raina, S. Characterization of the Escherichia coli σE regulon. J. Biol. Chem. 276, 20866–20875 (2001). (PMID: 1127415310.1074/jbc.M100464200)
Johansen, J., Rasmussen, A. A., Overgaard, M. & Valentin-Hansen, P. Conserved small non-coding RNAs that belong to the σE regulon: role in down-regulation of outer membrane proteins. J. Mol. Biol. 364, 1–8 (2006). (PMID: 1700787610.1016/j.jmb.2006.09.004)
Rhodius, V. A., Suh, W. C., Nonaka, G., West, J. & Gross, C. A. Conserved and variable functions of the σE stress response in related genomes. PLoS Biol. 4, 0043–0059 (2006).
Rollauer, S. E., Sooreshjani, M. A., Noinaj, N. & Buchanan, S. K. Outer membrane protein biogenesis in Gram-negative bacteria. Philos. Trans. R. Soc. B 370, 20150023 (2015).
Webb, C. T. et al. Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC. J. Mol. Biol. 422, 545–555 (2012). (PMID: 22683355343327510.1016/j.jmb.2012.05.035)
Fleming, P. J. et al. BamA POTRA domain interacts with a native lipid membrane surface. Biophys. J. 110, 2698–2709 (2016). (PMID: 27332128491958810.1016/j.bpj.2016.05.010)
Lee, J. et al. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc. Natl Acad. Sci. USA 115, 2359–2364 (2018).
Gunasinghe, S. D. et al. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. Cell Rep. 23, 2782–2794 (2018). (PMID: 2984780610.1016/j.celrep.2018.04.093)
Ricci, D. P., Hagan, C. L., Kahne, D. & Silhavy, T. J. Activation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc. Natl Acad. Sci. USA 109, 3487–3491 (2012). (PMID: 22331884329529610.1073/pnas.1201362109)
Roman-Hernandez, G., Peterson, J. H. & Bernstein, H. D. Reconstitution of bacterial autotransporter assembly using purified components. Elife 3, e04234 (2014). (PMID: 25182416417458010.7554/eLife.04234)
Hartmann, J.-B., Zahn, M., Burmann, I. M., Bibow, S. & Hiller, S. Sequence-specific solution NMR assignments of the β-barrel insertase BamA to monitor its conformational ensemble at the atomic level. J. Am. Chem. Soc. 140, 11252–11260 (2018). (PMID: 3012509010.1021/jacs.8b03220)
Simmons, L. C. et al. Expression of full-length immunoglobulins in Escherichia coli: Rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263, 133–147 (2002). (PMID: 1200921010.1016/S0022-1759(02)00036-4)
Lombana, T. N., Dillon, M., Bevers, J. & Spiess, C. Optimizing antibody expression by using the naturally occurring framework diversity in a live bacterial antibody display system. Sci. Rep. 5, 17488 (2015).
Hassan, P. A., Rana, S. & Verma, G. Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 31, 3–12 (2015). (PMID: 2505071210.1021/la501789z)
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020). (PMID: 32148853705537310.1107/S2052252520000081)
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193)
Zhang, K., Gctf & Real-time, C. T. F. determination and correction. J. Struct. Biol. 193, 1–12 (2016). (PMID: 26592709471134310.1016/j.jsb.2015.11.003)
Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 1–13 (2019). (PMID: 10.1038/s42003-019-0437-z)
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). (PMID: 2816547310.1038/nmeth.4169)
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020). (PMID: 3325783010.1038/s41592-020-00990-8)
Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012). (PMID: 2232577010.1016/j.str.2011.12.014)
Pettersen, E. F. et al. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084)
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D 74, 531–544 (2018). (PMID: 10.1107/S2059798318006551)
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D 60, 2126–2132 (2004). (PMID: 10.1107/S0907444904019158)
Chen, V. B. et al. MolProbity: aAll-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D 66, 12–21 (2010). (PMID: 10.1107/S0907444909042073)
Kim, K. H., Aulakh, S. & Paetzel, M. Crystal structure of β-barrel assembly machinery BamCD protein complex. J. Biol. Chem. 286, 39116–39121 (2011). (PMID: 21937441323473610.1074/jbc.M111.298166)
Tickle, I. J. et al. STARANISO (Global Phasing Ltd., 2018).
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013). (PMID: 23793146368952310.1107/S0907444913000061)
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). (PMID: 19461840248347210.1107/S0021889807021206)
Covaceuszach, S. et al. Dissecting NGF interactions with TrkA and p75 receptors by structural and functional studies of an anti-NGF neutralizing antibody. J. Mol. Biol. 381, 881–896 (2008). (PMID: 1863519510.1016/j.jmb.2008.06.008)
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D 66, 213–221 (2010). (PMID: 10.1107/S0907444909052925)
معلومات مُعتمدة: BB/M012573/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; MR/P01849/1 United Kingdom MRC_ Medical Research Council; BB/N007603/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; MR/P018491/1 United Kingdom MRC_ Medical Research Council; BB/T000635/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; 222373/Z/21/Z United Kingdom WT_ Wellcome Trust; 108466/Z/15/Z United Kingdom WT_ Wellcome Trust; United Kingdom WT_ Wellcome Trust; BB/M011151/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; 105220/Z/14?Z United Kingdom WT_ Wellcome Trust
المشرفين على المادة: 0 (Bacterial Outer Membrane Proteins)
0 (BamA protein, E coli)
0 (Escherichia coli Proteins)
0 (Liposomes)
0 (Proteolipids)
0 (Recombinant Proteins)
0 (proteoliposomes)
134632-13-6 (OmpX protein, E coli)
149024-69-1 (OMPA outer membrane proteins)
EC 3.- (Hydrolases)
تواريخ الأحداث: Date Created: 20210708 Date Completed: 20210721 Latest Revision: 20230204
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8263589
DOI: 10.1038/s41467-021-24432-x
PMID: 34234105
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-021-24432-x