دورية أكاديمية

Enzyme-assisted Solvent Extraction of High-yield Paeonia suffruticosa Andr. Seed Oil and Fatty Acid Composition and Anti-Alzheimer's Disease Activity.

التفاصيل البيبلوغرافية
العنوان: Enzyme-assisted Solvent Extraction of High-yield Paeonia suffruticosa Andr. Seed Oil and Fatty Acid Composition and Anti-Alzheimer's Disease Activity.
المؤلفون: Wei G; Department of School of Forestry, Northeast Forestry University., Zhang Z; Heilongjiang University of Chinese Medicine., Fu D; College of chemistry, chemical engineering and resource utilization, Northeast Forestry University., Zhang Y; College of chemistry, chemical engineering and resource utilization, Northeast Forestry University., Zhang W; College of chemistry, chemical engineering and resource utilization, Northeast Forestry University., Zu Y; College of chemistry, chemical engineering and resource utilization, Northeast Forestry University., Zhang L; College of chemistry, chemical engineering and resource utilization, Northeast Forestry University., Zhang Z; Department of School of Forestry, Northeast Forestry University.
المصدر: Journal of oleo science [J Oleo Sci] 2021 Aug 05; Vol. 70 (8), pp. 1133-1146. Date of Electronic Publication: 2021 Jul 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Japan Oil Chemists' Society Country of Publication: Japan NLM ID: 101175339 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1347-3352 (Electronic) Linking ISSN: 13458957 NLM ISO Abbreviation: J Oleo Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Tokyo : Japan Oil Chemists' Society
مواضيع طبية MeSH: Alzheimer Disease/*drug therapy , Nootropic Agents/*therapeutic use , Paeonia/*chemistry , Plant Oils/*therapeutic use , Seeds/*chemistry, Alzheimer Disease/pathology ; Animals ; Brain/drug effects ; Brain/pathology ; Drosophila/drug effects ; Fatty Acids/analysis ; Glycoside Hydrolases/chemistry ; Green Chemistry Technology/methods ; Learning/drug effects ; Memory, Short-Term/drug effects ; Nootropic Agents/analysis ; Nootropic Agents/chemistry ; Nootropic Agents/isolation & purification ; Olfactory Perception/drug effects ; Plant Oils/analysis ; Plant Oils/chemistry ; Plant Oils/isolation & purification ; Solid Phase Extraction/methods
مستخلص: Enzyme-assisted solvent extraction (EASE) of Paeonia suffruticosa Andr. seed oil (PSO) was optimized by response surface methodology (RSM). The fatty acid composition and anti-Alzheimer's disease (AD) activity of PSO were analyzed. An enzyme mixture composed of cellulase and hemicellulase (1:1, w/w) was most effective in determining the extraction yield of PSO. The ideal extraction conditions were a pH value of 5.1, an enzymolysis time of 68 min, and a temperature of 50℃. The average extraction yield of PSO was 38.2 mL/100 g, 37.4% higher than that of untreated peony seed (27.8 mL/100 g). The fatty acid composition of PSO under optimal conditions for EASE was analyzed by gas chromatography-mass spectrometry (GC-MS). The predominant unsaturated fatty acids of PSO were determined to be more than 90.00%, including n-3 α-linolenic acid (43.33%), n-6 linoleic acid (23.40%) and oleic acid (23.59%). In this experiment, the anti-AD effect of PSO was also analyzed by performing learning and memory ability tests with Drosophila. PSO retarded the decrease in climbing ability in AD Drosophila. The 1% and 5% PSO groups were significantly different from the model group ( b p < 0.05). The smell short-term memory ability test revealed the number of Drosophila in barrier and barrier-free centrifuge tubes in each group. PSO feeding improved learning and memory in AD Drosophila, with the highest number entering the barrierfree centrifuge tube. The performance index (PI) measured by the Pavlov olfactory avoidance conditioning test also demonstrated the effect of PSO on the learning and memory abilities of Drosophila. The PI of the PSO group was significantly increased compared to that of the model group. HE-stained brain tissue sections of AD Drosophila showed higher neurodegenerative changes, while PSO significantly reduced neurodegenerative damage. These results indicated that PSO can significantly improve the cognitive function of AD Drosophila and may help to prevent AD.
فهرسة مساهمة: Keywords: Paeonia suffruticosa Andr. seed oil; Drosophila with tau gene; cognitive improvement; enzyme-assisted extraction; response surface methodology
المشرفين على المادة: 0 (Fatty Acids)
0 (Nootropic Agents)
0 (Plant Oils)
EC 3.2.1.- (Glycoside Hydrolases)
تواريخ الأحداث: Date Created: 20210712 Date Completed: 20211122 Latest Revision: 20211122
رمز التحديث: 20231215
DOI: 10.5650/jos.ess21040
PMID: 34248097
قاعدة البيانات: MEDLINE
الوصف
تدمد:1347-3352
DOI:10.5650/jos.ess21040