دورية أكاديمية

A Gulf in lockdown: How an enforced ban on recreational vessels increased dolphin and fish communication ranges.

التفاصيل البيبلوغرافية
العنوان: A Gulf in lockdown: How an enforced ban on recreational vessels increased dolphin and fish communication ranges.
المؤلفون: Pine MK; Department of Biology, University of Victoria, Victoria, BC, Canada., Wilson L; Institute of Marine Science, University of Auckland, Auckland, New Zealand., Jeffs AG; Institute of Marine Science, University of Auckland, Auckland, New Zealand., McWhinnie L; School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK.; Department of Geography, University of Victoria, Victoria, BC, Canada., Juanes F; Department of Biology, University of Victoria, Victoria, BC, Canada., Scuderi A; Marine and Environmental Science Faculty, University of Cádiz, Cádiz, Spain.; Association Nereide, Cádiz, Spain., Radford CA; Institute of Marine Science, University of Auckland, Auckland, New Zealand.
المصدر: Global change biology [Glob Chang Biol] 2021 Oct; Vol. 27 (19), pp. 4839-4848. Date of Electronic Publication: 2021 Jul 22.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Animal Communication* , COVID-19* , Dolphins*, Acoustics ; Animals ; Communicable Disease Control ; Humans ; SARS-CoV-2
مستخلص: From midnight of 26 March 2020, New Zealand became one of the first countries to enter a strict lockdown to combat the spread of COVID-19. The lockdown banned all non-essential services and travel both on land and sea. Overnight, the country's busiest coastal waterway, the Hauraki Gulf Marine Park, became devoid of almost all recreational and non-essential commercial vessels. An almost instant change in the marine soundscape ensued, with ambient sound levels in busy channels dropping nearly threefold the first 12 h. This sudden drop led fish and dolphins to experience an immediate increase in their communication ranges by up to an estimated 65%. Very low vessel activity during the lockdown (indicated by the presence of vessel noise over the day) revealed new insights into cumulative noise effects from vessels on auditory masking. For example, at sites nearer Auckland City, communication ranges increased approximately 18 m (22%) or 50 m (11%) for every 10% decrease in vessel activity for fish and dolphins, respectively. However, further from the city and in deeper water, these communication ranges were increased by approximately 13 m (31%) or 510 m (20%). These new data demonstrate how noise from small vessels can impact underwater soundscapes and how marine animals will have to adapt to ever-growing noise pollution.
(© 2021 John Wiley & Sons Ltd.)
References: Andrew, R. K., Howe, B. M., & Mercer, J. A. (2011). Long-time trends in ship traffic noise for four sites off the North American West Coast. The Journal of the Acoustical Society of America, 129(2), 642-651. https://doi.org/10.1121/1.3518770.
Au, W. W. L., & Hastings, M. C. (2008). Principles of marine bioacoustics. Springer.
Bates, A. E., Primack, R. B..; PAN-Environment Working Group, & Duarte, C. M. (2021). Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 109175. https://doi.org/10.1016/j.biocon.2021.109175.
Bates, A. E., Primack, R. B., Moraga, P., & Duarte, C. M. (2020). COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biological Conservation, 248. https://doi.org/10.1016/j.biocon.2020.108665.
Beauducel, F. (2020). SUNRISE: Sunrise and sunset times. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/64692-sunrise-sunrise-and-sunset-times.
Beca. (2012). Auckland recreational boating study. Report for Auckland Council, Auckland, p. 40.
Bennett, N. J., Finkbeiner, E. M., Ban, N. C., Belhabib, D., Jupiter, S. D., Kittinger, J. N., Mangubhai, S., Scholtens, J., Gill, D., & Christie, P. (2020). The COVID-19 pandemic, small-scale fisheries and coastal fishing communities. Coastal Management, 48(4), 336-347. https://doi.org/10.1080/08920753.2020.1766937.
Clark, C. W., Ellison, W. T., Southall, B. L., Hatch, L., Van Parijs, S. M., Frankel, A., & Ponirakis, D. (2009). Acoustic masking in marine ecosystems: Intuitions, analysis, and implication. Marine Ecology Progress Series, 395, 201-222. https://doi.org/10.3354/meps08402.
Cominelli, S., Devillers, R., Yurk, H., MacGillivray, A., McWhinnie, L., & Canessa, R. (2018). Noise exposure from commercial shipping for the southern resident killer whale population. Marine Pollution Bulletin, 136, 177-200. https://doi.org/10.1016/j.marpolbul.2018.08.050.
Correa, J. M. G., Bayle Sempere, J.-T., Juanes, F., Rountree, R., Ruíz, J. F., & Ramis, J. (2019). Recreational boat traffic effects on fish assemblages: First evidence of detrimental consequences at regulated mooring zones in sensitive marine areas detected by passive acoustics. Ocean & Coastal Management, 168, 22-34. https://doi.org/10.1016/j.ocecoaman.2018.10.027.
Dolman, S. J., & Jasny, M. (2015). Evolution of marine noise pollution management. Aquatic Mammals, 41(4), 357-374. https://doi.org/10.1578/AM.41.4.2015.357.
Erbe, C., Marley, S. A., Schoeman, R. P., Smith, J. N., Trigg, L. E., & Embling, C. B. (2019). The effects of ship noise on marine mammals-A review. Frontiers in Marine Science, 6, 606. https://doi.org/10.3389/fmars.2019.00606.
Erbe, C., Reichmuth, C., Cunningham, K., Lucke, K., & Dooling, R. (2016). Communication masking in marine mammals: A review and research strategy. Marine Pollution Bulletin, 103(1), 15-38. https://doi.org/10.1016/j.marpolbul.2015.12.007.
Farcas, A., Powell, C. F., Brookes, K. L., & Merchant, N. D. (2020). Validated shipping noise maps of the Northeast Atlantic. Science of the Total Environment, 735, https://doi.org/10.1016/j.scitotenv.2020.139509.
Frankel, A. S., Zeddies, D., Simard, P., & Mann, D. (2014). Whistle source levels of free-ranging bottlenose dolphins and Atlantic spotted dolphins in the Gulf of Mexico. The Journal of the Acoustical Society of America, 135(3), 1624-1631. https://doi.org/10.1121/1.4863304.
Frisk, G. V. (2012). Noiseonomics: The relationship between ambient noise levels in the sea and global economic trends. Scientific Reports, 2(1), 437. https://doi.org/10.1038/srep00437.
Hauraki Gulf Forum. (2014). State of our Gulf-Tikapa Moana. Hauraki Gulf state of the environment report.
Hawkins, A. D., & Chapman, C. J. (1975). Masked auditory thresholds in the cod, Gadus morhua L. Journal of Comparative Physiology, 103(2), 209-226. https://doi.org/10.1007/BF00617122.
Hawkins, A. D., Johnson, C., & Popper, A. N. (2020). How to set sound exposure criteria for fishes. The Journal of the Acoustical Society of America, 147(3), 1762-1777. https://doi.org/10.1121/10.0000907.
Hawkins, A. D., & Picciulin, M. (2019). The importance of underwater sounds to gadoid fishes. The Journal of the Acoustical Society of America, 146(5), 3536-3551. https://doi.org/10.1121/1.5134683.
Hawkins, A. D., & Popper, A. N. (2014). Assessing the impacts of underwater sounds on fishes and other forms of marine life. Acoustics Today, 10(2), 30-41.
Hawkins, A. D., & Popper, A. N. (2017). A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES Journal of Marine Science, 74(3), 635-651. https://doi.org/10.1093/icesjms/fsw205.
Hermannsen, L., Mikkelsen, L., Tougaard, J., Beedholm, K., Johnson, M., & Madsen, P. T. (2019). Recreational vessels without Automatic Identification System (AIS) dominate anthropogenic noise contributions to a shallow water soundscape. Scientific Reports, 9(1), 15477. https://doi.org/10.1038/s41598-019-51222-9.
Hildebrand, J. A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series, 395, 5-20. https://doi.org/10.3354/meps08353.
Jones, N. (2019). The quest for quieter seas. Nature, 568, 158-161.
Joy, R., Tollit, D., Wood, J., MacGillivray, A., Li, Z., Trounce, K., & Robinson, O. (2019). Potential benefits of vessel slowdowns on endangered southern resident killer whales. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2019.00344.
Lecocq, T., Hicks, S. P., Van Noten, K., van Wijk, K., Koelemeijer, P., De Plaen, R. S. M., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M.-T., Arroyo-Solórzano, M., Assink, J. D., Büyükakpınar, P., Cannata, A., Cannavo, F., Carrasco, S., Caudron, C., Chaves, E. J., Cornwell, D. G., … Xiao, H. (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 80(369), eabd2438. https://doi.org/10.1126/science.abd2438.
Li, S., Wu, H., Xu, Y., Peng, C., Fang, L., Lin, M., Xing, L., & Zhang, P. (2015). Mid- to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins. The Journal of the Acoustical Society of America, 138(2), 942-952. https://doi.org/10.1121/1.4927416.
Luís, A. R., Couchinho, M. N., & dos Santos, M. E. (2014). Changes in the acoustic behavior of resident bottlenose dolphins near operating vessels. Marine Mammal Science, 30(4), 1417-1426. https://doi.org/10.1111/mms.12125.
Mandal, I., & Pal, S. (2020). COVID-19 pandemic persuaded lockdown effects on environment over stone quarrying and crushing areas. Science of the Total Environment, 732. https://doi.org/10.1016/j.scitotenv.2020.139281.
McWhinnie, L., Smallshaw, L., Serra-Sogas, N., O’Hara, P. D., & Canessa, R. (2017). The grand challenges in researching marine noise pollution from vessels: A horizon scan for 2017. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2017.00031.
Mills, S. C., Beldade, R., Henry, L., Laverty, D., Nedelec, S. L., Simpson, S. D., & Radford, A. N. (2020). Hormonal and behavioural effects of motorboat noise on wild coral reef fish. Environmental Pollution, 262, 114250. https://doi.org/10.1016/j.envpol.2020.114250.
Mooney, T. A., Di Iorio, L., Lammers, M., Lin, T.-H., Nedelec, S. L., Parsons, M., Radford, C., Urban, E. D., & Stanley, J. (2020). Listening forward: Approaching marine biodiversity assessments using acoustic methods. Royal Society Open Science, 7(8), 201287. https://doi.org/10.1098/rsos.201287.
Nabi, G., Hao, Y., McLaughlin, R. W., & Wang, D. (2018). The possible effects of high vessel traffic on the physiological parameters of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Frontiers in Physiology. https://doi.org/10.3389/fphys.2018.01665.
Nichols, T. A., Anderson, T. W., & Širović, A. (2015). Intermittent noise induces physiological stress in a coastal marine fish. PLoS One, 10(9), 1-13. https://doi.org/10.1371/journal.pone.0139157.
Nowacek, D., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Reponses of cetaceans to anthropogenic noise. Mammal Review, 37(2), 81-115. https://doi.org/10.1111/j.1365-2907.2007.00104.x.
Patrício Silva, A. L., Prata, J. C., Walker, T. R., Campos, D., Duarte, A. C., Soares, A. M. V. M., Barcelò, D., & Rocha-Santos, T. (2020). Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Science of the Total Environment, 742. https://doi.org/10.1016/j.scitotenv.2020.140565.
Peng, C., Zhao, X., & Liu, G. (2015). Noise in the sea and its impacts on marine organisms. International Journal of Environmental Research and Public Health, 12(10), 12304-12323. https://doi.org/10.3390/ijerph121012304.
Pine, M. K., Jeffs, A. G., Wang, D., & Radford, C. A. (2016). The potential for vessel noise to mask biologically important sounds within ecologically significant embayments. Ocean and Coastal Management, 127, 63-73. https://doi.org/10.1016/j.ocecoaman.2016.04.007.
Pine, M. K., Nikolich, K., Martin, B., Morris, C., & Juanes, F. (2020). Assessing auditory masking for management of underwater anthropogenic noise. The Journal of the Acoustical Society of America, 147(5), 3408-3417. https://doi.org/10.1121/10.0001218.
Pine, M. K., Schmitt, P., Culloch, R. M., Lieber, L., & Kregting, L. T. (2019). Providing ecological context to anthropogenic subsea noise: Assessing listening space reductions of marine mammals from tidal energy devices. Renewable and Sustainable Energy Reviews, 103, 49-57. https://doi.org/10.1016/j.rser.2018.12.024.
Pine, M. K., Wang, K., & Wang, D. (2017). Fine-scale habitat use in Indo-Pacific humpback dolphins, Sousa chinensis, may be more influenced by fish rather than vessels in the Pearl River Estuary, China. Marine Mammal Science, 33(1), 291-312. https://doi.org/10.1111/mms.12366.
Popper, A. N., & Hawkins, A. D. (2019). An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. Journal of Fish Biology, 94(5), 692-713. https://doi.org/10.1111/jfb.13948.
Popper, A. N., Hawkins, A. D., Fay, R. R., Mann, D. A., Bartol, S., Carlson, T. J., Coombs, S., Ellison, W. T., Gentry, R. L., Halvorsen, M. B., & Løkkeborg, S. (2014). Sound exposure guidelines for fishes and sea turtles: A technical report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI. Springer. https://doi.org/10.1007/978-3-319-06659-2.
Putland, R. L., Merchant, N. D., Farcas, A., & Radford, C. A. (2018). Vessel noise cuts down communication space for vocalizing fish and marine mammals. Global Change Biology, 24(4), 1708-1721. https://doi.org/10.1111/gcb.13996.
Radford, A. N., Kerridge, E., & Simpson, S. D. (2014). Acoustic communication in a noisy world: Can fish compete with anthropogenic noise? Behavioral Ecology, 25(5), 1022-1030. https://doi.org/10.1093/beheco/aru029.
Radford, C. A., Ghazali, S., Jeffs, A. G., & Montgomery, J. C. (2015). Vocalisations of the bigeye Pempheris adspersa: characteristics, source level and active space. The Journal of Experimental Biology, 218(6), 940-948. https://doi.org/10.1242/jeb.115295.
Richardson, W. J., Greene, C. R., Malme, C. I., & Thomson, D. H. (1995). Marine mammals and noise. Academic Press.
Rolland, R. M., Parks, S. E., Hunt, K. E., Castellote, M., Corkeron, P. J., Nowacek, D. P., Wasser, S. K., & Kraus, S. D. (2012). Evidence that ship noise increases stress in right whales. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2363-2368. https://doi.org/10.1098/rspb.2011.2429.
Rutz, C., Loretto, M.-C., Bates, A. E., Davidson, S. C., Duarte, C. M., Jetz, W., Johnson, M., Kato, A., Kays, R., Mueller, T., Primack, R. B., Ropert-Coudert, Y., Tucker, M. A., Wikelski, M., & Cagnacci, F. (2020). COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecology & Evolution, 4, 1156-1159. https://doi.org/10.1038/s41559-020-1237-z.
Shannon, G., McKenna, M. F., Angeloni, L. M., Crooks, K. R., Fristrup, K. M., Brown, E., Warner, K. A., Nelson, M. D., White, C., Briggs, J., McFarland, S., & Wittemyer, G. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 91(4), 982-1005. https://doi.org/10.1111/brv.12207.
Simmonds, M. P., Dolman, S. J., Jasny, M., Parsons, E. C. M., Weilgart, L., Wright, A. J., & Leaper, R. (2014). Marine noise pollution-Increasing recognition but need for more practical action. Journal of Ocean Technology, 9(1), 71-90.
Sims, P. Q., Hung, S. K., & Würsig, B. (2012). High-speed vessel noises in west Hong Kong waters and their contributions relative to Indo-Pacific humpback dolphins (Sousa chinensis). Journal of Marine Biology, 2012, 169103. https://doi.org/10.1155/2012/169103.
Slabbekoorn, H., Bouton, N., van Opzeeland, I., Coers, A., ten Cate, C., & Popper, A. N. (2010). A noisy spring: The impact of globally rising underwater sound levels on fish. Trends in Ecology and Evolution, 25(7), 419-427. https://doi.org/10.1016/j.tree.2010.04.005.
Smith, M. E., Kane, A. S., & Popper, A. N. (2004). Noise-induced stress response and hearing loss in goldfish (Carassius auratus). Journal of Experimental Biology, 207(3), 427-435. https://doi.org/10.1242/jeb.00755.
Spiga, I., Aldred, N., & Caldwell, G. S. (2017). Anthropogenic noise compromises the anti-predator behaviour of the European seabass, Dicentrarchus labrax (L.). Marine Pollution Bulletin, 122(1-2), 297-305. https://doi.org/10.1016/j.marpolbul.2017.06.067.
Stanley, J. A., Van Parijs, S. M., & Hatch, L. T. (2017). Underwater sound from vessel traffic reduces the effective communication range in Atlantic cod and haddock. Scientific Reports, 7(14633), 1-12. https://doi.org/10.1038/s41598-017-14743-9.
Thomson, D. J. M., & Barclay, D. R. (2020). Real-time observations of the impact of COVID-19 on underwater noise. The Journal of the Acoustical Society of America, 147(5), 3390-3396. https://doi.org/10.1121/10.0001271.
Weilgart, L. S. (2007). The impacts of anthropogenic ocean noise on cetaceans and implications for management. Canadian Journal of Zoology, 85(11), 1091-1116. https://doi.org/10.1139/Z07-101.
Wright, A. J., Aguilar de Soto, N., Baldwin, A. L., Bateson, M., Beale, C. M., Clark, C., Deak, T., Edwards, E. F., Fernández, A., Godinho, A., Hatch, L. T., Kakuschke, A., Lusseau, D., Martineau, D., Romero, M. L., Weilgart, L. S., Wintle, B. A., Notarbartolo-di-Sciara, G., & Martin, V. (2007). Do marine mammals experience stress related to anthropogenic noise? International Journal of Comparative Psychology, 20(4), 274-316. https://doi.org/10.5070/P4202009994.
معلومات مُعتمدة: Department of Conservation, New Zealand
فهرسة مساهمة: Keywords: COVID-19; acoustics; anthropogenic noise; communication range; dolphins; marine mammals; masking; vessels
تواريخ الأحداث: Date Created: 20210713 Date Completed: 20210908 Latest Revision: 20220531
رمز التحديث: 20231215
DOI: 10.1111/gcb.15798
PMID: 34254409
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.15798