دورية أكاديمية

Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis.

التفاصيل البيبلوغرافية
العنوان: Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis.
المؤلفون: Chen R; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China., Jia Q; Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996., Mu X; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China., Hu B; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China., Sun X; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China., Deng Z; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China.; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, People's Republic of China., Chen F; Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996; liutg@whu.edu.cn gkbian@whu.edu.cn fengc@utk.edu.; Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996., Bian G; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China; liutg@whu.edu.cn gkbian@whu.edu.cn fengc@utk.edu., Liu T; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China; liutg@whu.edu.cn gkbian@whu.edu.cn fengc@utk.edu.; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, People's Republic of China.
المصدر: Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2021 Jul 20; Vol. 118 (29).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print Cited Medium: Internet ISSN: 1091-6490 (Electronic) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : National Academy of Sciences
مواضيع طبية MeSH: Alkyl and Aryl Transferases/*genetics , Fungal Proteins/*genetics , Mutant Chimeric Proteins/*genetics, Alkyl and Aryl Transferases/metabolism ; Diterpenes/chemistry ; Diterpenes/metabolism ; Evolution, Molecular ; Fungal Proteins/metabolism ; Fungi/classification ; Fungi/enzymology ; Fungi/genetics ; Genome, Fungal/genetics ; Molecular Structure ; Mutant Chimeric Proteins/metabolism ; Mutation ; Phylogeny ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae/metabolism ; Sesterterpenes/chemistry ; Sesterterpenes/metabolism
مستخلص: Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.
Competing Interests: Competing interest statement: One patent application has been submitted based on the work reported here.
(Copyright © 2021 the Author(s). Published by PNAS.)
References: Eur J Biochem. 2002 Jul;269(14):3339-54. (PMID: 12135472)
Org Lett. 2017 Dec 15;19(24):6696-6699. (PMID: 29185768)
J Basic Microbiol. 2014 Dec;54(12):1387-94. (PMID: 25138463)
Nat Prod Rep. 2020 Mar 25;37(3):425-463. (PMID: 31650156)
Angew Chem Int Ed Engl. 2018 Nov 26;57(48):15887-15890. (PMID: 30277637)
Nat Prod Rep. 2018 Dec 12;35(12):1330-1346. (PMID: 29855001)
Nat Commun. 2019 Sep 18;10(1):4248. (PMID: 31534134)
Angew Chem Int Ed Engl. 2018 Jul 2;57(27):8280-8283. (PMID: 29758116)
Annu Rev Plant Biol. 2011;62:549-66. (PMID: 21275647)
Nat Protoc. 2007;2(1):38-41. (PMID: 17401336)
J Phys Chem Lett. 2010 May 6;1(9):1332-1335. (PMID: 20454551)
Chembiochem. 2013 May 10;14(7):822-5. (PMID: 23554321)
Angew Chem Int Ed Engl. 2017 Mar 1;56(10):2776-2779. (PMID: 28146322)
Nat Prod Rep. 2012 Oct;29(10):1153-75. (PMID: 22907771)
Chem Sci. 2018 Mar 16;9(15):3754-3758. (PMID: 29780507)
Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1658-61. (PMID: 26546087)
Angew Chem Int Ed Engl. 2018 Jan 26;57(5):1291-1295. (PMID: 29194888)
Metab Eng. 2017 Jul;42:1-8. (PMID: 28438645)
Curr Opin Struct Biol. 2016 Dec;41:27-37. (PMID: 27285057)
Microb Cell Fact. 2016 Oct 1;15(1):166. (PMID: 27716225)
J Am Chem Soc. 2015 Sep 16;137(36):11846-53. (PMID: 26332841)
Curr Opin Struct Biol. 2017 Dec;47:95-104. (PMID: 28787627)
Org Lett. 2013 Feb 1;15(3):594-7. (PMID: 23324037)
Plant Commun. 2020 Apr 29;1(5):100051. (PMID: 33367256)
Arch Pharm Res. 2012 Oct;35(10):1749-56. (PMID: 23139125)
Biotechnol Bioeng. 2014 Jul;111(7):1396-405. (PMID: 24473754)
Chem Rev. 2017 Sep 13;117(17):11570-11648. (PMID: 28841019)
ACS Chem Biol. 2016 Apr 15;11(4):889-99. (PMID: 26734760)
Chemistry. 2017 Jul 26;23(42):10053-10057. (PMID: 28671289)
J Am Chem Soc. 2016 Aug 10;138(31):10011-8. (PMID: 27447198)
Org Lett. 2021 Mar 5;23(5):1525-1529. (PMID: 33480256)
Biotechnol Lett. 2003 Sep;25(17):1385-95. (PMID: 14514038)
Plant J. 2011 Apr;66(1):212-29. (PMID: 21443633)
Curr Opin Biotechnol. 2017 Dec;48:234-241. (PMID: 28779606)
Sci Rep. 2017 Nov 8;7(1):14991. (PMID: 29118396)
J Org Chem. 2009 Feb 20;74(4):1541-8. (PMID: 19161275)
Biochemistry. 2017 Apr 11;56(14):2010-2023. (PMID: 28362483)
J Org Chem. 2008 Sep 19;73(18):7197-203. (PMID: 18707172)
Science. 2010 Oct 1;330(6000):70-4. (PMID: 20929806)
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3084-8. (PMID: 17360612)
Chembiochem. 2018 Apr 20;:. (PMID: 29675947)
Org Lett. 2018 Mar 16;20(6):1626-1629. (PMID: 29513542)
Angew Chem Int Ed Engl. 2016 May 4;55(19):5785-8. (PMID: 27038368)
Nature. 2006 Apr 13;440(7086):940-3. (PMID: 16612385)
Plant Physiol. 2014 Sep;166(1):428-41. (PMID: 25052853)
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E6005-E6014. (PMID: 28673978)
Comput Struct Biotechnol J. 2012 Nov 05;3:e201210006. (PMID: 24688666)
Nat Chem Biol. 2007 Jul;3(7):408-14. (PMID: 17576428)
Sci Rep. 2020 Sep 10;10(1):14944. (PMID: 32913319)
Nature. 2011 Jan 6;469(7328):116-20. (PMID: 21160477)
فهرسة مساهمة: Keywords: chimeric terpene synthases; diterpene; evolution; fungi; sesterterpene
المشرفين على المادة: 0 (Diterpenes)
0 (Fungal Proteins)
0 (Mutant Chimeric Proteins)
0 (Sesterterpenes)
EC 2.5.- (Alkyl and Aryl Transferases)
EC 2.5.1.- (terpene synthase)
تواريخ الأحداث: Date Created: 20210714 Date Completed: 20211208 Latest Revision: 20211214
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8307374
DOI: 10.1073/pnas.2023247118
PMID: 34257153
قاعدة البيانات: MEDLINE
الوصف
تدمد:1091-6490
DOI:10.1073/pnas.2023247118