دورية أكاديمية

UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD.

التفاصيل البيبلوغرافية
العنوان: UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD.
المؤلفون: Lin BC; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA., Higgins NR; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.; Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA., Phung TH; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA., Monteiro MJ; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.; Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
المصدر: The FEBS journal [FEBS J] 2022 Oct; Vol. 289 (20), pp. 6132-6153. Date of Electronic Publication: 2021 Jul 28.
نوع المنشور: Journal Article; Review; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
مواضيع طبية MeSH: Amyotrophic Lateral Sclerosis*/metabolism , Frontotemporal Dementia*/genetics, Adaptor Proteins, Signal Transducing/genetics ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Autophagy-Related Proteins/genetics ; Autophagy-Related Proteins/metabolism ; Cell Cycle Proteins/genetics ; Cell Cycle Proteins/metabolism ; Mitochondrial Proteins/genetics ; Mutation ; Nuclear Proteins/genetics ; Proteasome Endopeptidase Complex/metabolism ; Ubiquitins/genetics ; Ubiquitins/metabolism
مستخلص: Ubiquilin (UBQLN) proteins are a dynamic and versatile family of proteins found in all eukaryotes that function in the regulation of proteostasis. Besides their canonical function as shuttle factors in delivering misfolded proteins to the proteasome and autophagy systems for degradation, there is emerging evidence that UBQLN proteins play broader roles in proteostasis. New information suggests the proteins function as chaperones in protein folding, protecting proteins prior to membrane insertion, and as guardians for mitochondrial protein import. In this review, we describe the evidence for these different roles, highlighting how different domains of the proteins impart these functions. We also describe how changes in the structure and phase separation properties of UBQLNs may regulate their activity and function. Finally, we discuss the pathogenic mechanisms by which mutations in UBQLN2 cause amyotrophic lateral sclerosis and frontotemporal dementia. We describe the animal model systems made for different UBQLN2 mutations and how lessons learnt from these systems provide fundamental insight into the molecular mechanisms by which UBQLN2 mutations drive disease pathogenesis through disturbances in proteostasis.
(© 2021 Federation of European Biochemical Societies.)
References: Balch WE, Morimoto RI, Dillin A & Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319, 916-919.
Chen B, Retzlaff M, Roos T & Frydman J (2011) Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 3, a004374.
Amm I, Sommer T & Wolf DH (2014) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843, 182-196.
Labbadia J & Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84, 435-464.
Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR & Ecroyd H (2016) Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem 137, 489-505.
Hipp MS, Kasturi P & Hartl FU (2019) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20, 421-435.
Marin I (2014) The ubiquilin gene family: evolutionary patterns and functional insights. BMC Evol Biol 14, 63.
Wu AL, Wang J, Zheleznyak A & Brown EJ (1999) Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol Cell 4, 619-625.
Mah AL, Perry G, Smith MA & Monteiro MJ (2000) Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J Cell Biol 151, 847-862.
Kleijnen MF, Shih AH, Zhou P, Kumar S, Soccio RE, Kedersha NL, Gill G & Howley PM (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6, 409-419.
Davidson JD, Riley B, Burright EN, Duvick LA, Zoghbi HY & Orr HT (2000) Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Hum Mol Genet 9, 2305-2312.
Yuan S, Swiggin HM, Zheng H & Yan W (2015) A testis-specific gene, Ubqlnl, is dispensable for mouse embryonic development and spermatogenesis. Mol Reprod Dev 82, 408-409.
Matsuda M, Koide T, Yorihuzi T, Hosokawa N & Nagata K (2001) Molecular cloning of a novel ubiquitin-like protein, UBIN, that binds to ER targeting signal sequences. Biochem Biophys Res Commun 280, 535-540.
Su V, Nakagawa R, Koval M & Lau AF (2010) Ubiquitin-independent proteasomal degradation of endoplasmic reticulum-localized connexin43 mediated by CIP75. J Biol Chem 285, 40979-40990.
Conklin D, Holderman S, Whitmore TE, Maurer M & Feldhaus AL (2000) Molecular cloning, chromosome mapping and characterization of UBQLN3 a testis-specific gene that contains an ubiquitin-like domain. Gene 249, 91-98.
Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H et al. (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211-215.
Higgins N, Lin B & Monteiro MJ (2019) Lou Gehrig's disease (ALS): UBQLN2 mutations strike out of phase. Structure 27, 879-881.
Hershko A & Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67, 425-479.
Elsasser S & Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7, 742-749.
Husnjak K & Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81, 291-322.
Su V & Lau AF (2009) Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation. Cell Mol Life Sci 66, 2819-2833.
Hartmann-Petersen R & Gordon C (2004) Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 15, 247-259.
Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D & Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481-488.
Dikic I, Wakatsuki S & Walters KJ (2009) Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol 10, 659-671.
Chen X, Ebelle DL, Wright BJ, Sridharan V, Hooper E & Walters KJ (2019) Structure of hRpn10 Bound to UBQLN2 UBL illustrates basis for complementarity between shuttle factors and substrates at the proteasome. J Mol Biol 431, 939-955.
Martinez-Fonts K, Davis C, Tomita T, Elsasser S, Nager AR, Shi Y, Finley D & Matouschek A (2020) The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun 11, 477.
Walters KJ, Kleijnen MF, Goh AM, Wagner G & Howley PM (2002) Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 41, 1767-1777.
Lim PJ, Danner R, Liang J, Doong H, Harman C, Srinivasan D, Rothenberg C, Wang H, Ye Y, Fang S et al. (2009) Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J Cell Biol 187, 201-217.
Chang L & Monteiro MJ (2015) Defective proteasome delivery of polyubiquitinated proteins by ubiquilin-2 proteins containing ALS mutations. PLoS One 10, e0130162.
Levine B & Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132, 27-42.
Dikic I & Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19, 349-364.
Kurlawala Z, Shah PP, Shah C & Beverly LJ (2017) The STI and UBA domains of UBQLN1 are critical determinants of substrate interaction and proteostasis. J Cell Biochem 118, 2261-2270.
Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ & Hegde RS (2016) Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell 63, 21-33.
Wu JJ, Cai A, Greenslade JE, Higgins NR, Fan C, Le NTT, Tatman M, Whiteley AM, Prado MA, Dieriks BV et al. (2020) ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc Natl Acad Sci USA 117, 15230-15241.
Lin BC, Phung TH, Higgins NR, Greenslade JE, Prado MA, Finley D, Karbowski M, Polster BM & Monteiro MJ (2021) ALS/FTD mutations in UBQLN2 are linked to mitochondrial dysfunction through loss-of-function in mitochondrial protein import. Hum Mol Genet 30, 1230-1246.
Kaye FJ, Modi S, Ivanovska I, Koonin EV, Thress K, Kubo A, Kornbluth S & Rose MD (2000) A family of ubiquitin-like proteins binds the ATPase domain of Hsp70-like Stch. FEBS Lett 467, 348-355.
Hjerpe R, Bett JS, Keuss MJ, Solovyova A, McWilliams TG, Johnson C, Sahu I, Varghese J, Wood N, Wightman M et al. (2016) UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166, 935-949.
Fry MY, Saladi SM & Clemons WM Jr (2021) The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Protein Sci 30, 882-898.
Dao TP, Kolaitis RM, Kim HJ, O'Donovan K, Martyniak B, Colicino E, Hehnly H, Taylor JP & Castaneda CA (2018) Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol Cell 69, 965-978.e6.
Alexander EJ, Ghanbari Niaki A, Zhang T, Sarkar J, Liu Y, Nirujogi RS, Pandey A, Myong S & Wang J (2018) Ubiquilin 2 modulates ALS/FTD-linked FUS-RNA complex dynamics and stress granule formation. Proc Natl Acad Sci USA 115, E11485-E11494.
Sharkey LM, Safren N, Pithadia AS, Gerson JE, Dulchavsky M, Fischer S, Patel R, Lantis G, Ashraf N, Kim JH et al. (2018) Mutant UBQLN2 promotes toxicity by modulating intrinsic self-assembly. Proc Natl Acad Sci US A 115, E10495-E10504.
Gerson JE, Linton H, Xing J, Sutter AB, Kakos FS, Ryou J, Liggans N, Sharkey LM, Safren N, Paulson HL et al. (2021) Shared and divergent phase separation and aggregation properties of brain-expressed ubiquilins. Sci Rep 11, 287.
Riley JF, Fioramonti PJ, Rusnock AK, Hehnly H & Castaneda CA (2021) ALS-linked mutations impair UBQLN2 stress-induced biomolecular condensate assembly in cells. J Neurochem in press. https://doi.org/10.1111/jnc.15453.
Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8, 195-208.
Gilpin KM, Chang L & Monteiro MJ (2015) ALS-linked mutations in ubiquilin-2 or hnRNPA1 reduce interaction between ubiquilin-2 and hnRNPA1. Hum Mol Genet 24, 2565-2577.
Sharkey LM, Sandoval-Pistorius SS, Moore SJ, Gerson JE, Komlo R, Fischer S, Negron-Rios KY, Crowley EV, Padron F, Patel R et al. (2020) Modeling UBQLN2-mediated neurodegenerative disease in mice: Shared and divergent properties of wild type and mutant UBQLN2 in phase separation, subcellular localization, altered proteostasis pathways, and selective cytotoxicity. Neurobiol Dis 143, 105016.
Gerson JE, Safren N, Fischer S, Patel R, Crowley EV, Welday JP, Windle AK, Barmada S, Paulson HL & Sharkey LM (2020) Ubiquilin-2 differentially regulates polyglutamine disease proteins. Hum Mol Genet 29, 2596-2610.
Zhang W, Huang B, Gao L & Huang C (2021) Impaired 26S proteasome assembly precedes neuronal loss in mutant UBQLN2 rats. Int J Mol Sci 22. in press. https://doi.org/10.3390/ijms22094319.
Jachimowicz RD, Beleggia F, Isensee J, Velpula BB, Goergens J, Bustos MA, Doll MA, Shenoy A, Checa-Rodriguez C, Wiederstein JL et al. (2019) UBQLN4 represses homologous recombination and is overexpressed in aggressive tumors. Cell 176, 505-519.e22.
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-1166.
Hirayama S, Sugihara M, Morito D, Iemura SI, Natsume T, Murata S & Nagata K (2018) Nuclear export of ubiquitinated proteins via the UBIN-POST system. Proc Natl Acad Sci USA 115, E4199-E4208.
Doi H, Mitsui K, Kurosawa M, Machida Y, Kuroiwa Y & Nukina N (2004) Identification of ubiquitin-interacting proteins in purified polyglutamine aggregates. FEBS Lett 571, 171-176.
Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE & Monteiro MJ (2006) Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin. Hum Mol Genet 15, 1025-1041.
Mori F, Tanji K, Odagiri S, Toyoshima Y, Yoshida M, Ikeda T, Sasaki H, Kakita A, Takahashi H & Wakabayashi K (2012) Ubiquilin immunoreactivity in cytoplasmic and nuclear inclusions in synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease. Acta Neuropathol 124, 149-151.
Satoh J, Tabunoki H, Ishida T, Saito Y & Arima K (2013) Ubiquilin-1 immunoreactivity is concentrated on Hirano bodies and dystrophic neurites in Alzheimer's disease brains. Neuropathol Appl Neurobiol 39, 817-830.
Mizukami K, Abrahamson EE, Mi Z, Ishikawa M, Watanabe K, Kinoshita S, Asada T & Ikonomovic MD (2014) Immunohistochemical analysis of ubiquilin-1 in the human hippocampus: association with neurofibrillary tangle pathology. Neuropathology 34, 11-18.
Safren N, El Ayadi A, Chang L, Terrillion CE, Gould TD, Boehning DF & Monteiro MJ (2014) Ubiquilin-1 overexpression increases the lifespan and delays accumulation of Huntingtin aggregates in the R6/2 mouse model of Huntington's disease. PLoS One 9, e87513.
Brettschneider J, Van Deerlin VM, Robinson JL, Kwong L, Lee EB, Ali YO, Safren N, Monteiro MJ, Toledo JB, Elman L et al. (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123, 825-839.
Zhang K, Wang A, Zhong K, Qi S, Wei C, Shu X, Tu WY, Xu W, Xia C, Xiao Y et al. (2021) UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model. Neuron 109, 1949-1962.e6.
Rutherford NJ, Lewis J, Clippinger AK, Thomas MA, Adamson J, Cruz PE, Cannon A, Xu G, Golde TE, Shaw G et al. (2013) Unbiased screen reveals ubiquilin-1 and -2 highly associated with huntingtin inclusions. Brain Res 1524, 62-73.
Safren N, Chang L, Dziki KM & Monteiro MJ (2015) Signature changes in ubiquilin expression in the R6/2 mouse model of Huntington's disease. Brain Res 1597, 37-46.
Ciechanover A & Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427-446.
Wang H & Monteiro MJ (2007) Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity. Exp Cell Res 313, 2810-2820.
Liu Y, Qiao F & Wang H (2017) Enhanced proteostasis in post-ischemic stroke mouse brains by ubiquilin-1 promotes functional recovery. Cell Mol Neurobiol 37, 1325-1329.
Adegoke OO, Qiao F, Liu Y, Longley K, Feng S & Wang H (2017) Overexpression of ubiquilin-1 alleviates Alzheimer's disease-caused cognitive and motor deficits and reduces amyloid-beta accumulation in mice. J Alzheimers Dis 59, 575-590.
Liu Y, Lu L, Hettinger CL, Dong G, Zhang D, Rezvani K, Wang X & Wang H (2014) Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice. J Neurosci 34, 2813-2821.
Wang S, Tatman M & Monteiro MJ (2020) Overexpression of UBQLN1 reduces neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Acta Neuropathol Commun 8, 164.
Wang H & Monteiro MJ (2007) Ubiquilin interacts and enhances the degradation of expanded-polyglutamine proteins. Biochem Biophys Res Commun 360, 423-427.
Schulte J & Littleton JT (2011) The biological function of the Huntingtin protein and its relevance to Huntington's Disease pathology. Curr Trends Neurol 5, 65-78.
Qiao F, Longley KR, Feng S, Schnack S, Gao H, Li Y, Schlenker EH & Wang H (2017) Reduced body weight gain in ubiquilin-1 transgenic mice is associated with increased expression of energy-sensing proteins. Physiol Rep 5, e13260.
Huang B, Wu Q, Zhou H, Huang C & Xia XG (2016) Increased Ubqln2 expression causes neuron death in transgenic rats. J Neurochem 139, 258-293.
Ceballos-Diaz C, Rosario AM, Park HJ, Chakrabarty P, Sacino A, Cruz PE, Siemienski Z, Lara N, Moran C, Ravelo N et al. (2015) Viral expression of ALS-linked ubiquilin-2 mutants causes inclusion pathology and behavioral deficits in mice. Mol Neurodegener 10, 25.
Le NT, Chang L, Kovlyagina I, Georgiou P, Safren N, Braunstein KE, Kvarta MD, Van Dyke AM, LeGates TA, Philips T et al. (2016) Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS-FTD-linked UBQLN2 mutations. Proc Natl Acad Sci USA 113, E7580-E7589.
Higgins NR, Greenslade JE, Wu JJ, Miranda E, Galliciotti G & Monteiro MJ (2021) Serpin neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Brain Pathol e12948. in press. https://doi.org/10.1111/bpa.12948.
Whiteley AM, Prado MA, de Poot SAH, Paulo JA, Ashton M, Dominguez S, Weber M, Ngu H, Szpyt J, Jedrychowski MP et al. (2021) Global proteomics of Ubqln2-based murine models of ALS. J Biol Chem 296, 100153.
Wu Q, Liu M, Huang C, Liu X, Huang B, Li N, Zhou H & Xia XG (2015) Pathogenic Ubqln2 gains toxic properties to induce neuron death. Acta Neuropathol 129, 417-428.
Kim SH, Shi Y, Hanson KA, Williams LM, Sakasai R, Bowler MJ & Tibbetts RS (2008) Potentiation of ALS-associated TDP-43 aggregation by the proteasome-targeting factor, Ubiquilin 1. J Biol Chem 284, 8083-8092.
Schwartz AL & Ciechanover A (1999) The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu Rev Med 50, 57-74.
Lipkowitz S & Weissman AM (2011) RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11, 629-643.
Akutsu M, Dikic I & Bremm A (2016) Ubiquitin chain diversity at a glance. J Cell Sci 129, 875-880.
Swatek KN & Komander D (2016) Ubiquitin modifications. Cell Res 26, 399-422.
Yau R & Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18, 579-586.
Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC & Martin A (2018) Structure and function of the 26S proteasome. Annu Rev Biochem 87, 697-724.
Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269, 7059-7061.
Shi Y, Chen X, Elsasser S, Stocks BB, Tian G, Lee BH, Shi Y, Zhang N, de Poot SA, Tuebing F et al. (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351 , 1126.
Yao T & Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403-407.
Verma R, Aravind L, Oania R, McDonald WH, Yates JR, Koonin EV & Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615.
Massey LK, Mah AL, Ford DL, Miller J, Liang J, Doong H & Monteiro MJ (2004) Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins. J Alzheimers Dis 6, 79-92.
Raasi S, Varadan R, Fushman D & Pickart CM (2005) Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 12, 708-714.
Zhang D, Raasi S & Fushman D (2008) Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J Mol Biol 377, 162-180.
Harman CA & Monteiro MJ (2019) The specificity of ubiquitin binding to ubiquilin-1 is regulated by sequences besides its UBA domain. Biochim Biophys Acta Gen Subj 1863, 1568-1574.
Ko HS, Uehara T, Tsuruma K & Nomura Y (2004)_Ubiquilin interacts with ubiquitylated proteins_and proteasome through its ubiquitin-associated and ubiquitin-like domains. FEBS Lett 566, 110-114.
Chen X, Randles L, Shi K, Tarasov SG, Aihara H & Walters KJ (2016) Structures of Rpn1 T1:Rad23 and hRpn13:hPLIC2 reveal distinct binding mechanisms between substrate receptors and shuttle factors of the proteasome. Structure 24, 1257-1270.
Hamazaki J, Hirayama S & Murata S (2015) Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis. PLoS Genet 11, e1005401.
Sun Z & Brodsky JL (2019) Protein quality control in the secretory pathway. J Cell Biol 218, 3171-3187.
Araki K & Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3, a007526.
Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW & Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770-774.
Vembar SS & Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9, 944-957.
Hirsch C, Gauss R, Horn SC, Neuber O & Sommer T (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458, 453-460.
Kim TY, Kim E, Yoon SK & Yoon JB (2008) Herp enhances ER-associated protein degradation by recruiting ubiquilins. Biochem Biophys Res Commun 369, 741-746.
Xia Y, Yan LH, Huang B, Liu M, Liu X & Huang C (2014) Pathogenic mutation of UBQLN2 impairs its interaction with UBXD8 and disrupts endoplasmic reticulum-associated protein degradation. J Neurochem 129, 99-106.
Ron D & Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519-529.
Hetz C, Zhang K & Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21, 421-438.
Levine B & Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176, 11-42.
Collins MP & Forgac M (2018) Regulation of V-ATPase assembly in nutrient sensing and function of V-ATPases in breast cancer metastasis. Front Physiol 9, 902.
Senturk M, Lin G, Zuo Z, Mao D, Watson E, Mikos AG & Bellen HJ (2019) Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nat Cell Biol 21, 384-396.
Wu S, Mikhailov A, Kallo-Hosein H, Hara K, Yonezawa K & Avruch J (2002) Characterization of ubiquilin 1, an mTOR-interacting protein. Biochim Biophys Acta 1542, 41-56.
Dunlop EA & Tee AR (2014) mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol 36, 121-212.
Saxton RA & Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 169, 361-371.
Coffey RT, Shi Y, Long MJ, Marr MT 2nd & Hedstrom L (2016) Ubiquilin-mediated small molecule inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 291, 5221-5233.
N'Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J & Brown EJ (2009) PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 10, 173-179.
Rothenberg C, Srinivasan D, Mah L, Kaushik S, Peterhoff CM, Ugolino J, Fang S, Cuervo AM, Nixon RA & Monteiro MJ (2010) Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet 19, 3219-3232.
Sakowski ET, Koster S, Portal Celhay C, Park HS, Shrestha E, Hetzenecker SE, Maurer K, Cadwell K & Philips JA (2015) Ubiquilin 1 promotes IFN-gamma-induced Xenophagy of Mycobacterium tuberculosis. PLoS Pathog 11, e1005076.
Lee DY, Arnott D & Brown EJ (2013) Ubiquilin4 is an adaptor protein that recruits Ubiquilin1 to the autophagy machinery. EMBO Rep 14, 373-381.
Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E & Cuervo AM (2011) Chaperone-mediated autophagy at a glance. J Cell Sci 124, 495-499.
Kaushik S & Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19, 365-381.
Pfanner N, Warscheid B & Wiedemann N (2019) Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20, 267-284.
Whiteley AM, Prado MA, Peng I, Abbas AR, Haley B, Paulo JA, Reichelt M, Katakam A, Sagolla M, Modrusan Z et al. (2017) Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins. Elife 6, e26435.
Ibsen KH (1961) The Crabtree effect: a review. Cancer Res 21, 829-841.
Hartl FU, Bracher A & Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332.
Stieren ES, El Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, Barral JM & Boehning D (2011) Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J Biol Chem 286, 35689-35698.
Ford DL & Monteiro MJ (2006) Dimerization of ubiquilin is dependent upon the central region of the protein: evidence that the monomer, but not the dimer, is involved in binding presenilins. Biochem J 399, 397-404.
Bertolini M, Fenzl K, Kats I, Wruck F, Tippmann F, Schmitt J, Auburger JJ, Tans S, Bukau B & Kramer G (2021) Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly. Science 371, 57-64.
Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP & Designed JPTAM (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133.
Banani SF, Lee HO, Hyman AA & Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18, 285-298.
Protter DSW & Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26, 668-679.
Walters RW & Parker R (2015) Coupling of ribostasis and proteostasis: Hsp70 Proteins in mRNA metabolism. Trends Biochem Sci 40, 552-559.
Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A & Parker R (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487-498.
Dao TP, Martyniak B, Canning AJ, Lei Y, Colicino EG, Cosgrove MS, Hehnly H & Castaneda CA (2019) ALS-linked mutations affect UBQLN2 oligomerization and phase separation in a position- and amino acid-dependent manner. Structure 27, 937-951.e5.
Zheng T, Galagedera SKK & Castaneda CA (2021) Previously uncharacterized interactions between the folded and intrinsically disordered domains impart asymmetric effects on UBQLN2 phase separation. Protein Sci 30, 1467-1481.
Cassel JA & Reitz AB (2013) Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: characterization of inhibition by nucleic acids and 4-aminoquinolines. Biochim Biophys Acta 1834, 964-971.
Subudhi I & Shorter J (2018) Ubiquilin 2: shuttling clients out of phase? Mol Cell 69, 919-921.
Gavriilidis C, Laredj L, Solinhac R, Messaddeq N, Viaud J, Laporte J, Sumara I & Hnia K (2018) The MTM1-UBQLN2-HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nat Cell Biol 20, 198-210.
Korolchuk VI, Menzies FM & Rubinsztein DC (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 584, 1393-1398.
Regan-Klapisz E, Sorokina I, Voortman J, de Keizer P, Roovers RC, Verheesen P, Urbe S, Fallon L, Fon EA, Verkleij A et al. (2005) Ubiquilin recruits Eps15 into ubiquitin-rich cytoplasmic aggregates via a UIM-UBL interaction. J Cell Sci 118, 4437-4450.
N'Diaye EN, Hanyaloglu AC, Kajihara KK, Puthenveedu MA, Wu P, von Zastrow M & Brown EJ (2008) The ubiquitin-like protein PLIC-2 is a negative regulator of G protein-coupled receptor endocytosis. Mol Biol Cell 19, 1252-1260.
McMahon HT & Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12, 517-533.
Van Bergen En Henegouwen PMP (2009) Eps15: a multifunctional adaptor protein regulating intracellular trafficking. Cell Commun Signal 7, 24.
Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG & Moss SJ (2001) GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci 4, 908-916.
Ficklin MB, Zhao S & Feng G (2005) Ubiquilin-1 regulates nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. J Biol Chem 280, 34088-34095.
Bache KG, Brech A, Mehlum A & Stenmark H (2003) Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 162, 435-442.
Kama R, Gabriely G, Kanneganti V & Gerst JE (2018) Cdc48 and ubiquilins confer selective anterograde protein sorting and entry into the multivesicular body in yeast. Mol Biol Cell 29, 948-963.
Xu J, Camfield R & Gorski SM (2018) The interplay between exosomes and autophagy - partners in crime. J Cell Sci 131, jcs215210. https://doi.org/10.1242/jcs.215210.
Brown RH & Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377, 162-172.
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH & van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet 390, 2084-2098.
Synofzik M, Maetzler W, Grehl T, Prudlo J, Vom Hagen JM, Haack T, Rebassoo P, Munz M, Schols L & Biskup S (2012) Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging 33, 2949.e13-7.
Williams KL, Warraich ST, Yang S, Solski JA, Fernando R, Rouleau GA, Nicholson GA & Blair IP (2012) UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging 33, 2527.e3-10.
Vengoechea J, David MP, Yaghi SR, Carpenter L & Rudnicki SA (2013) Clinical variability and female penetrance in X-linked familial FTD/ALS caused by a P506S mutation in UBQLN2. Amyotroph Lateral Scler Frontotemporal Degener 14, 615-619.
Gellera C, Tiloca C, Del Bo R, Corrado L, Pensato V, Agostini J, Cereda C, Ratti A, Castellotti B, Corti S et al. (2013) Ubiquilin 2 mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Neurosurg Psychiatry 84, 183-187.
Fahed AC, McDonough B, Gouvion CM, Newell KL, Dure LS, Bebin M, Bick AG, Seidman JG, Harter DH & Seidman CE (2014) UBQLN2 mutation causing heterogeneous X-linked dominant neurodegeneration. Ann Neurol 75, 793-798.
Kotan D, Iskender C, Ozoguz Erimis A & Basak AN (2016) A Turkish family with a familial ALS-positive UBQLN2-S340I mutation. Noro Psikiyatr Ars 53, 283-285.
Scotter EL, Smyth L, Bailey J, Wong CH, de Majo M, Vance CA, Synek BJ, Turner C, Pereira J, Charleston A et al. (2017) C9ORF72 and UBQLN2 mutations are causes of amyotrophic lateral sclerosis in New Zealand: a genetic and pathologic study using banked human brain tissue. Neurobiol Aging 49, 214 e1-214 e5.
Teyssou E, Chartier L, Amador MD, Lam R, Lautrette G, Nicol M, Machat S, Da Barroca S, Moigneu C, Mairey M et al. (2017) Novel UBQLN2 mutations linked to amyotrophic lateral sclerosis and atypical hereditary spastic paraplegia phenotype through defective HSP70-mediated proteolysis. Neurobiol Aging 58, 239 e11-239 e20.
Gkazi SA, Troakes C, Topp S, Miller JW, Vance CA, Sreedharan J, Al-Chalabi A, Kirby J, Shaw PJ, Al-Sarraj S et al. (2019) Striking phenotypic variation in a family with the P506S UBQLN2 mutation including amyotrophic lateral sclerosis, spastic paraplegia, and frontotemporal dementia. Neurobiol Aging 73, 229 e5-229 e9.
Fecto F & Siddique T (2012) UBQLN2/P62 cellular recycling pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Muscle Nerve 45, 157-162.
Neumann M, Kwong LK, Truax AC, Vanmassenhove B, Kretzschmar HA, Van Deerlin VM, Clark CM, Grossman M, Miller BL, Trojanowski JQ et al. (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66, 177-183.
Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H et al. (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61, 427-434.
Steinacker P, Barschke P & Otto M (2019) Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 97, 43-59.
Osaka M, Ito D & Suzuki N (2016) Disturbance of proteasomal and autophagic protein degradation pathways by amyotrophic lateral sclerosis-linked mutations in ubiquilin 2. Biochem Biophys Res Commun 472, 324-331.
Kandasamy G & Andréasson C (2018) Hsp70-Hsp110 chaperones deliver ubiquitin-dependent and -independent substrates to the 26S proteasome for proteolysis in yeast. J Cell Sci 131, jcs210948. https://doi.org/10.1242/jcs.210948.
Gorrie GH, Fecto F, Radzicki D, Weiss C, Shi Y, Dong H, Zhai H, Fu R, Liu E, Li S et al. (2014) Dendritic spinopathy in transgenic mice expressing ALS/dementia-linked mutant UBQLN2. Proc Natl Acad Sci USA 111, 14524-14529.
Lin JH, Walter P & Yen TS (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3, 399-425.
Hetz C & Saxena S (2017) ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 13, 477-491.
Saxena S, Cabuy E & Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12, 627-636.
Sun S, Sun Y, Ling SC, Ferraiuolo L, McAlonis-Downes M, Zou Y, Drenner K, Wang Y, Ditsworth D, Tokunaga S et al. (2015) Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc Natl Acad Sci USA 112, E6993-E7002.
Lippincott-Schwartz J, Roberts TH & Hirschberg K (2000) Secretory protein trafficking and organelle dynamics in living cells. Ann Rev Cell Dev Biol 16, 557-589.
Halloran M, Ragagnin AMG, Vidal M, Parakh S, Yang S, Heng B, Grima N, Shahheydari H, Soo KY, Blair I et al. (2019) Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress. Cell Mol Life Sci 77, 3859-3873.
Atkin JD, Farg MA, Soo KY, Walker AK, Halloran M, Turner BJ, Nagley P & Horne MK (2014) Mutant SOD1 inhibits ER-Golgi transport in amyotrophic lateral sclerosis. J Neurochem 129, 190-204.
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G & Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145.
Yoshii SR & Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18, e1865.
Ma S, Attarwala IY & Xie XQ (2019) SQSTM1/p62: a potential target for neurodegenerative disease. ACS Chem Neurosci 10, 2094-2114.
Chen T, Huang B, Shi X, Gao L & Huang C (2018) Mutant UBQLN2(P497H) in motor neurons leads to ALS-like phenotypes and defective autophagy in rats. Acta Neuropathol Commun 6, 122.
Collins MP & Forgac M (2020) Regulation and function of V-ATPases in physiology and disease. Biochim Biophys Acta Biomembr 1862, 183341.
Chen T, Zhang W, Huang B, Chen X & Huang C (2020) UBQLN2 promotes the production of type I interferon via the TBK1-IRF3 pathway. Cells 9, 1205.
Picher-Martel V, Dutta K, Phaneuf D, Sobue G & Julien JP (2015) Ubiquilin-2 drives NF-kappaB activity and cytosolic TDP-43 aggregation in neuronal cells. Mol Brain 8, 71.
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133.
Picher-Martel V, Renaud L, Bareil C & Julien JP (2019) Neuronal expression of UBQLN2(P497H) exacerbates TDP-43 pathology in TDP-43(G348C) mice through interaction with ubiquitin. Mol Neurobiol 56, 4680-4696.
Kim SH, Stiles SG, Feichtmeier JM, Ramesh N, Zhan L, Scalf MA, Smith LM, Pandey UB & Tibbetts RS (2018) Mutation-dependent aggregation and toxicity in a Drosophila model for UBQLN2-associated ALS. Hum Mol Genet 27, 322-337.
Saxton AD & Kraemer BC (2021) Human Ubiquilin 2 and TDP-43 co-pathology drives neurodegeneration in transgenic C. elegans. G3 (Bethesda) jkab158. in press. https://doi.org/10.1093/g3journal/jkab158.
Mackenzie IR & Rademakers R (2008) The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 21, 693-700.
Scotter EL, Chen HJ & Shaw CE (2015) TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics 12, 352-363.
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al. (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772-1775.
Zheng T, Yang Y & Castaneda CA (2020) Structure, dynamics and functions of UBQLNs: at the crossroads of protein quality control machinery. Biochem J 477, 3471-3497.
Smith EF, Shaw PJ & De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710, 132933.
Yadav S, Singh N, Shah PP, Rowbotham DA, Malik D, Srivastav A, Shankar J, Lam WL, Lockwood WW & Beverly LJ (2017) MIR155 regulation of ubiquilin1 and ubiquilin 2: implications in cellular protection and tumorigenesis. Neoplasia 19, 321-332.
Liu Z, Ruan Y, Yue W, Zhu Z, Hartmann T, Beyreuther K & Zhang D (2006) GM1 up-regulates Ubiquilin 1 expression in human neuroblastoma cells and rat cortical neurons. Neurosci Lett 407, 59-63.
Liu Y, Feng S, Subedi K & Wang H (2020) Attenuation of ischemic stroke-caused brain injury by a monoamine oxidase inhibitor involves improved proteostasis and reduced neuroinflammation. Mol Neurobiol 57, 937-948.
معلومات مُعتمدة: R01 NS098243 United States NS NINDS NIH HHS; R01 NS100008 United States NS NINDS NIH HHS; RF1 NS098243 United States NS NINDS NIH HHS
فهرسة مساهمة: Keywords: ALS; OXPHOS; UBQLN2; mitochondria
المشرفين على المادة: 0 (Adaptor Proteins, Signal Transducing)
0 (Autophagy-Related Proteins)
0 (Cell Cycle Proteins)
0 (Mitochondrial Proteins)
0 (Nuclear Proteins)
0 (Ubiquitins)
EC 3.4.25.1 (Proteasome Endopeptidase Complex)
تواريخ الأحداث: Date Created: 20210717 Date Completed: 20221019 Latest Revision: 20230111
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8761781
DOI: 10.1111/febs.16129
PMID: 34273246
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-4658
DOI:10.1111/febs.16129