دورية أكاديمية

Widespread agrochemicals differentially affect zooplankton biomass and community structure.

التفاصيل البيبلوغرافية
العنوان: Widespread agrochemicals differentially affect zooplankton biomass and community structure.
المؤلفون: Hébert MP; Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada.; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada.; Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada., Fugère V; Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada.; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada.; Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada.; Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada.; Département des Sciences de L'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada., Beisner BE; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada.; Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada.; Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada., Barbosa da Costa N; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada.; Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada., Barrett RDH; Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada.; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada.; Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada.; Redpath Museum, McGill University, Montréal, Québec, H3A 0C4, Canada., Bell G; Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada.; Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada., Shapiro BJ; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada.; Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada.; Department of Microbiology and Immunology, McGill Genome Centre, Montréal, Québec, H3A 0G1, Canada., Yargeau V; Department of Chemical Engineering, McGill University, Montréal, Québec, H3A 0C5, Canada., Gonzalez A; Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada.; Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada., Fussmann GF; Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada.; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada.; Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada.
المصدر: Ecological applications : a publication of the Ecological Society of America [Ecol Appl] 2021 Oct; Vol. 31 (7), pp. e02423. Date of Electronic Publication: 2021 Aug 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Ecological Society of America Country of Publication: United States NLM ID: 9889808 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1051-0761 (Print) Linking ISSN: 10510761 NLM ISO Abbreviation: Ecol Appl Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, D.C. : Ecological Society of America
Original Publication: Tempe, AZ : The Society, 1991-
مواضيع طبية MeSH: Water Pollutants, Chemical*/analysis , Water Pollutants, Chemical*/toxicity , Zooplankton*, Agrochemicals ; Animals ; Biomass ; Ecosystem ; Fresh Water
مستخلص: Anthropogenic environmental change is causing habitat deterioration at unprecedented rates in freshwater ecosystems. Despite increasing more rapidly than many other agents of global change, synthetic chemical pollution-including agrochemicals such as pesticides-has received relatively little attention in freshwater community and ecosystem ecology. Determining the combined effects of multiple agrochemicals on complex biological systems remains a major challenge, requiring a cross-field integration of ecology and ecotoxicology. Using a large-scale array of experimental ponds, we investigated the response of zooplankton community properties (biomass, composition, and diversity metrics) to the individual and joint presence of three globally widespread agrochemicals: the herbicide glyphosate, the neonicotinoid insecticide imidacloprid, and nutrient fertilizers. We tracked temporal variation in zooplankton biomass and community structure along single and combined pesticide gradients (each spanning eight levels), under low (mesotrophic) and high (eutrophic) nutrient-enriched conditions, and quantified (1) response threshold concentrations, (2) agrochemical interactions, and (3) community resistance and recovery. We found that the biomass of major zooplankton groups differed in their sensitivity to pesticides: ≥0.3 mg/L glyphosate elicited long-lasting declines in rotifer communities, both pesticides impaired copepods (≥3 µg/L imidacloprid and ≥5.5 mg/L glyphosate), whereas some cladocerans were highly tolerant to pesticide contamination. Strong interactive effects of pesticides were only recorded in ponds treated with the combination of the highest doses. Overall, glyphosate was the most influential driver of aggregate community properties of zooplankton, with biomass and community structure responding rapidly but recovering unequally over time. Total community biomass showed little resistance when first exposed to glyphosate, but rapidly recovered and even increased with glyphosate concentration over time; in contrast, taxon richness decreased in more contaminated ponds but failed to recover. Our results indicate that the biomass of tolerant taxa compensated for the loss of sensitive species after the first exposure, conferring greater community resistance upon a subsequent contamination event; a case of pollution-induced community tolerance in freshwater animals. These findings suggest that zooplankton biomass may be more resilient to agrochemical pollution than community structure; yet all community properties measured in this study were affected at glyphosate concentrations below common water quality guidelines in North America.
(© 2021 by the Ecological Society of America.)
References: Alexander, A. C., J. M. Culp, D. J. Baird, and A. J. Cessna. 2016. Nutrient-insecticide interactions decouple density-dependent predation pressure in aquatic insects. Freshwater Biology 61:2090-2101.
Alexander, A. C., A. T. Luis, J. M. Culp, D. J. Baird, and A. J. Cessna. 2013. Can nutrients mask community responses to insecticide mixtures? Ecotoxicology 22:1085-1100.
Allan, E., W. Weisser, A. Weigelt, C. Roscher, M. Fischer, and H. Hillebrand. 2011. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proceedings of the National Academy of Sciences USA 108:17034-17039.
Altenburger, R., T. Backhaus, W. Boedeker, M. Faust, and M. Scholze. 2013. Simplifying complexity: mixture toxicity assessment in the last 20 years. Environmental Toxicology and Chemistry 32:1685-1687.
Anderson, J. C., C. Dubetz, and V. P. Palace. 2015. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Science of the Total Environment 505:409-422.
Anderson, M. J., K. E. Ellingsen, and B. H. McArdle. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683-693.
Annett, R., H. R. Habibi, and A. Hontela. 2014. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. Journal of Applied Toxicology 34:458-479.
Aparicio, V. C., E. De Gerónimo, D. Marino, J. Primost, P. Carriquiriborde, and J. L. Costa. 2013. Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93:1866-1873.
Arndt, H. 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)-a review. Hydrobiologia 255:231-246.
Arnoldi, J.-F., M. Loreau, and B. Haegeman. 2019. The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecology Letters 22:1557-1567.
Baker, L. F., J. F. Mudge, D. G. Thompson, J. E. Houalahan, and K. A. Kidd. 2016. The combined influence of two agricultural contaminants on natural communities of phytoplankton and zooplankton. Ecotoxicology 25:1021-1032.
Barbosa da Costa, N., et al. 2021. Resistance, resilience, and functional redundancy of freshwater bacterioplankton facing a gradient of agricultural stress. Molecular Ecology. http://dx.doi.org/10.1111/mec.16100.
Bérard, A., and C. Benninghoff. 2001. Pollution-induced community tolerance (PICT) and seasonal variations in the sensitivity of phytoplankton to atrazine in nanocosms. Chemosphere 45:427-437.
Berman, M. C., M. E. Llames, P. Minotti, P. Fermani, M. V. Quiroga, M. A. Ferraro, S. Metz, and H. E. Zagarese. 2020. Field evidence supports former experimental claims on the stimulatory effect of glyphosate on picocyanobacteria communities. Science of the Total Environment 701:134601.
Bernhardt, E. S., E. J. Rosi, and M. O. Gessner. 2017. Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment 15:84-90.
Birk, S., et al. 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution 4:1060-1068.
Blanck, H. 2002. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Human and Ecological Risk Assessment: An International Journal 8:1003-1034.
Boivin, M.-E.-Y., A. M. Breure, L. Posthuma, and R. Michel. 2002. Determination of field effects of contaminants-significance of pollution-induced community tolerance. Human and Ecological Risk Assessment: An International Journal 8:1035-1055.
Brock, A. L., A. Rein, F. Polesel, K. M. Nowak, M. Kästner, and S. Trapp. 2019. Microbial turnover of glyphosate to biomass: utilization as nutrient source and formation of AMPA and biogenic NER in an OECD 308 test. Environmental Science and Technology 53:5838-5847.
Canadian Council of Ministers of the Environment (CCME). 2007. Canadian water quality guidelines for the protection of aquatic life: imidacloprid. Canadian environmental quality guidelines. CCME, Winnipeg, Manitoba, Canada.
Canadian Council of Ministers of the Environment (CCME). 2012. Canadian water quality guidelines for the protection of aquatic life: glyphosate. Canadian environmental quality guidelines. CCME, Winnipeg, Manitoba, Canada.
Chará-Serna, A. M., L. B. Epele, C. A. Morrissey, and J. S. Richardson. 2019. Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Science of the Total Environment 692:1291-1303.
Coors, A., and L. De Meester. 2008. Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology 45:1820-1828.
Côté, I. M., E. S. Darling, and C. J. Brown. 2016. Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society B 283:20152592.
Cottingham, K. L., B. L. Brown, and J. T. Lennon. 2001. Biodiversity may regulate the temporal variability of ecological systems. Ecology Letters 4:72-85.
Cottingham, K. L., J. T. Lennon, and B. L. Brown. 2005. Knowing when to draw the line: designing more informative ecological experiments. Frontier in Ecology and the Environment 3:145-152.
Cuhra, M., T. Traavik, and T. Bøhn. 2013. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology 22:251-262.
Dunne, J. A., and R. J. Williams. 2009. Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B 364:1711-1723.
Fenoll, J., I. Garrido, P. Hellín, P. Flored, and S. Navarro. 2015. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides. Environmental Science and Pollution Research 22:15055-15066.
Fleeger, J. W., K. R. Carman, and R. M. Nisbet. 2003. Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment 317:207-233.
Food and Agriculture Organization of the United Nations. (FAO). 2020. Database collection of the Food and Agriculture Organization of the United Nations, inputs/pesticides use URL: http://www.fao.org/faostat/en/#data.
Forlani, G., M. Pavan, M. Gramek, P. Kafarski, and J. Lipok. 2008. Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant and Cell Physiology 49:443-456.
Frank, S. D., and J. F. Tooker. 2020. Neonicotinoids pose undocumented threats to food webs. Proceedings of the National Academy of Sciences USA 117:22609-22613.
Fugère, V. 2020. Data for 'Community rescue in experimental phytoplankton communities facing severe herbicide pollution'. Figshare, data set. https://doi.org/10.6084/m9.figshare.11717361.v2.
Fugère, V., et al. 2020. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology & Evolution 4:578-588.
Gelman, A. 2008. Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27:2865-2873.
Gessner, M. O., and A. Tlili. 2016. Fostering integration of freshwater ecology with ecotoxicology. Freshwater Biology 61:1991-2001.
Geyer, R. L., G. R. Smith, and J. E. Rettig. 2016. Effects of Roundup formulations, nutrient addition, and Western mosquitofish (Gambusia affinis) on aquatic communities. Environmental Science and Pollution Research (International) 23:11729-11739.
Gilliom, R. J. et al. 2006. The quality of our nation’s waters-pesticides in the nation’s streams and ground water, 1992-2001. U.S. Geological Survey circular 1291. U.S. Geological Survey, Reston, Virginia, USA.
Gonzalez, A., and M. Loreau. 2009. The causes and consequences of compensatory dynamics in ecological communities. Annual Reviews of Ecology, Evolution and Systematics 40:393-414.
Gsell, A., D. Özkundakci, M.-P. Hébert, and R. Adrian. 2016. Quantifying change in plankton network stability and topology based on empirical long-term data. Ecological Indicators 65:76-88.
Gutierrez, M. F., Y. Battauz, and B. Caisso. 2017. Disruption of the hatching dynamics of zooplankton egg banks due to glyphosate application. Chemosphere 171:644-653.
Halstead, N. T., T. A. McMahon, S. A. Johnson, T. R. Raffel, J. M. Romansic, P. W. Crumrine, and J. R. Rohr. 2014. Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecology Letters 17:932-941.
Haney, J. F., et al. 2013. An-image-based key to the zooplankton of North America. Version 5.0 released. University of New Hampshire Center for Freshwater Biology. https://cfb.unh.edu.
Harris, T. D., and V. H. Smith. 2016. Do persistent organic pollutants stimulate cyanobacterial blooms? Inland Waters 6:124-130.
Hébert, M.-P. 2014. Classification et relations entre les traits fonctionnels des crustacés zooplanctoniques : de l’organisme à l’écosystème. Masters thesis. Université de Montréal, Canada. http://hdl.handle.net/1866/11156.
Hébert, M.-P. 2021. Data for “Widespread agrochemicals differentially affect zooplankton biomass and community structure” Figshare, data set. https://doi.org/10.6084/m9.figshare.14977092.v1.
Hébert, M.-P., B. E. Beisner, and R. Maranger. 2016. A compilation of quantitative functional traits for marine and freshwater crustacean zooplankton. Ecology 97:1081.
Hébert, M.-P., V. Fugère, and A. Gonzalez. 2019. The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Frontiers in Ecology and the Environment 17:48-56.
Hénault-Ethier, L., M. Lucotte, M. Moingt, S. Paquet, S. Maccario, E. Smedbol, M. P. Gomes, L. Lepage, P. Juneau, and M. Labrecque. 2017. Herbaceous or Salix miyabeana “SX64” narrow buffer strips as a means to minimize glyphosate and minomethylphosphonic acid leaching from row crop fields. Science of the Total Environment 598:1177-1186.
Hillebrand, H., and C. Kunze. 2020. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecology Letters 23:575-858.
Hillebrand, H., S. Langenheder, K. Lebret, E. Lindstrom, O. Ostman, and M. Striebel. 2018. Decomposing multiple dimensions of stability in global change experiments. Ecology Letters 21:21-30.
Hladik, M. L., D. W. Kolpin, and K. M. Kuivila. 2014. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environmental Pollution 193:189-196.
Hoover, D. L., A. K. Knapp, and M. D. Smith. 2014. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95:2646-2656.
Hothorn, T., P. Buehlmann, S. Dudoit, A. Molinaro, and M. van Der Laan. 2006. Survival ensembles. Biostatistics 7:355-373.
Hove-Jensen, B., D. L. Zechel, and B. Jochimsen. 2014. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiology and Molecular Biology Reviews 78:176-197.
Hudson, P. L., and L. T. Lesko. 2003. Free-living and parasitic copepods of the Laurentian Great Lakes: keys and details on individual species. Great Lakes Science Center, Ann Arbor, Michigan, USA. glsc.usgs.gov/greatlakescopepods/.
Ippolito, A., M. Kattwinkel, J. J. Rasmussen, R. B. Schäfer, R. Fornaroli, and M. Liess. 2015. Modeling global distribution of agricultural insecticides in surface waters. Environmental Pollution 198:54-60.
Ives, A. R., and B. J. Cadinale. 2004. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429:174-177.
Jackson, M. C., C. J. Loewen, R. D. Vinebrooke, and C. T. Chimimba. 2016. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biology 22:180-189.
Kreyling, J., A. H. Schweiger, M. Bahn, P. Ineson, M. Migliavacca, T. Morel-Journel, J. R. Christiansen, N. Schtickzelle, and K. S. Larsen. 2018. To replicate, or not to replicate-that is the question: how to tackle nonlinear responses in ecological experiments. Ecology Letters 21:1629-1638.
Lim, X.-E., K.-S. Lai, H.-J. Liew, and J.-Y. Loh. 2019. Acute toxicity of glyphosate on various life stages of calanoid copepod, Pseudodiaptomus annandalei. Asia-Pacific Journal of Molecular Biology and Biotechnology 27:24-31.
Lu, T., N. Xu, Q. Zhang, Z. Zhang, A. Debognies, Z. Zhou, L. Sun, and H. Qian. 2020. Understanding the influence of glyphosate on the structure and function of freshwater microbial community in a microcosm. Environmental Pollution 260:114012.
Maggi, F., D. la Cecilia, F. H. M. Tang, and A. McBratney. 2020. The global environmental hazard of glyphosate use. Science of the Total Environment 717:137167.
Malaj, E., P. C. von der Ohe, M. Grote, R. Kühne, C. P. Mondy, P. Usseglio-Polatera, W. Brack, and R. B. Schäfer. 2014. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences USA 111:9549-9554.
Mazor, T., C. Doropoulos, F. Schwarzmueller, D. W. Gladish, N. Kumaran, K. Merkel, M. D. Marco, and V. Gagic. 2018. Global mismatch of policy and research on drivers of biodiversity loss. Nature Ecology and Evolution 2:1071-1074.
Medalie, L., N. T. Baker, M. E. Shoda, W. W. Stone, M. T. Meyer, E. G. Stets, and M. Wilson. 2020. Influence of land use and region on glyphosate and aminomethylphosphonic acid in streams in the USA. Science of the Total Environment 707:136008.
Mikó, Z., J. Ujszegi, Z. Gal, Z. Imrei, and A. Hettyey. 2015. Choice of experimental venue matters in ecotoxicology studies: comparison of a laboratory-based and an outdoor mesocosm experiment. Aquatic Toxicology 167:20-30.
Miracle, M. R., M. T. Alfonso, and E. Vicente. 2007. Fish and nutrient enrichment effects on rotifers in a Mediterranean shallow lake: a mesocosm experiment. Hydrobiologia 593:77-94.
Montiel-Léon, J. M., G. Munoz, S. V. Duy, D. T. Do, M. A. Vaudreuil, K. Goeury, F. Guillemette, M. Amyot, and S. Sauvé. 2019. Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Environmental Pollution 250:29-39.
Morrissey, C. A., P. Mineau, J. H. Devries, F. Sanchez-Bayo, M. Liess, M. C. Cavallaro, and K. Liber. 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environment International 74:291-303.
Murphy, G. E. P., and T. N. Romanuk. 2014. A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution 4:91-103.
Oksanen, J., et al. 2019. vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan.
Orr, J. A., et al. 2020. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proceedings of the Royal Society B 287:20200421.
Pennekamp, F., et al. 2018. Biodiversity increases and decreases ecosystem stability. Nature 563:109-112.
Pérez, G. L., et al. 2007. Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecological Applications 17:2310-2322.
Peters, K., M. Bundschuh, and R. B. Schäfer. 2013. Review on the effects of toxicants on freshwater ecosystem functions. Environmental Pollution 180:324-329.
R Development Core Team. 2020. R: A language and environment for statistical computing (R Foundation for Statistical Computing). https://www.R-project.org/.
Raby, M., M. Nowierski, D. Perlow, X. Zhao, C. Hao, C. Poirier, and P. K. Sibley. 2018. Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates. Environmental Toxicology and Chemistry 37:1430-1445.
Reid, A. J., et al. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 84:849-873.
Relyea, R. A. 2005. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 15:618-627.
Relyea, R. A. 2006. The impact of insecticides and herbicide on the biodiversity and productivity of aquatic communities: response. Ecological Applications 16:2027-2034.
Relyea, R. A. 2009. A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159:363-376.
Relyea, R. A., and J. T. Hoverman. 2006. Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecology Letters 9:1157-1171.
Relyea, R. A., and J. T. Hoverman. 2008. Interactive effects of predators and a pesticide on aquatic communities. Oikos 117:1647-1658.
Rockström, J., et al. 2009. A safe operating space for humanity. Nature 461:472-475.
Rohr, J. R., and P. W. Crumrine. 2005. Effects of an herbicide and an insecticide on pond community structure and processes. Ecological Applications 15:1135-1147.
Rohr, J. R., J. L. Kerby, and A. Sih. 2006. Community ecology as a framework for predicting contaminant effects. Trends in Ecology and Evolution 21:606-613.
Rumschlag, S. L., M. B. Mahon, J. T. Hoverman, T. R. Raffel, H. J. Carrick, P. J. Hudson, and J. R. Rohr. 2020. Consistent effects of pesticides on community structure and ecosystem function in freshwater systems. Nature Communications 11:6333.
Satiroff, J. A., T. L. Messer, A. R. Mittelstet, and D. D. Snow. 2021. Pesticide occurrence and persistence entering recreational lakes in watersheds of varying land uses. Environmental Pollution 273:116399.
Saxton, M. A., E. A. Morrow, R. A. Bourbonniere, and S. W. Wilhelm. 2011. Glyphosate influence on phytoplankton community structure in Lake Erie. Journal of the Great Lakes Research 37:683-690.
Schäfer, R. B., B. Kühn, E. Malaj, A. König, and R. Gergs. 2016. Contribution of organic toxicants to multiple stress in river ecosystems. Freshwater Biology 61:2116-2128.
Schrama, M., S. H. Barmentlo, E. R. Hunting, R. S. van Logtestijn, M. G. Vijver, and P. M. van Bodegom. 2017. Pressure-induced shifts in trophic linkages in a simplified aquatic food web. Frontiers in Environmental Sciences 5:75.
Simon-Delso, N., et al. 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research 22:5-34.
Sommer, U., F. Sommer, B. Santer, C. Jamieson, M. Boersma, C. Becker, and T. Hansen. 2001. Complementary impact of copepods and cladocerans on phytoplankton. Ecology Letters 4:545-550.
Sommer, U., F. Sommer, B. Santer, E. Zöllner, K. Jürgens, C. Jamieson, M. Boersma, and K. Gocke. 2003. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135:639-647.
Steffen, W., et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:736-746.
Stehle, S., and R. Schulz. 2015. Agricultural insecticides threaten surface waters at the global scale. Proceedings of the National Academy of Sciences USA 112:5750-5755.
Struger, J., J. Grabuski, S. Cagampan, E. Sverko, D. McGoldrick, and C. H. Marvin. 2017. Factors influencing the occurrence and distribution of neonicotinoid insecticides in surface waters of southern Ontario, Canada. Chemosphere 169:516-523.
Struger, J., D. Thompson, B. Staznik, P. Martin, T. McDaniel, and C. Marvin. 2008. Occurrence of glyphosate in surface waters of Southern Ontario. Bulletin of Environmental Contaminants and Toxicology 80:378-384.
Sumon, K. A., A. K. Ritika, E. T. H. M. Peeters, H. Rashid, R. H. Bosma, M. S. Rahman, M. K. Fatema, and P. J. Van den Brink. 2018. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environmental Pollution 236:424-441.
Thompson, P. L., T. J. Davies, and A. Gonzalez. 2015. Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity. PLoS ONE 10:e0117595.
Thorp, J. H., and A. P. Covich. 2001. Ecology and classification of North American freshwater invertebrates. Second edition. Academic Press.
Tlili, A., et al. 2016. Pollution-induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshwater Biology 61:2141-2151.
Tsui, M. T. K., and L. M. Chu. 2003. Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189-1197.
United States Environmental Protection Agency (EPA). 2019. Aquatic life benchmarks and ecological risk assessments for registered pesticides. www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk.
Van Bruggen, A. H. C., M. M. He, K. Shin, V. Mai, K. C. Jeong, M. R. Finckh, and J. G. Morris, Jr. 2018. Environmental and health effects of the herbicide glyphosate. Science of the Total Environment 617:255-268.
Van den Brink, P. J., P. J. den Besten, A. B. de Vaate, and C. J. F. ter Braak. 2008. Principal response curves technique for the analysis of multivariate biomonitoring time series. Environmental Monitoring and Assessment 152:271-281.
Van Dijk, T. C., M. A. Van Staalduinen, and J. P. Van der Sluijs. 2013. Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS ONE 8:e62374.
Vera, M. S., E. Di Fiori, L. Lagomarsino, R. Sinistro, R. Escaray, M. M. Iummato, A. Juarez, M. D. C. Ríos de Molina, G. Tell, and H. Pizarro. 2012. Direct and indirect effects of the glyphosate formulation Glifosato Atanor on freshwater microbial communities. Ecotoxicology 21:1805-1816.
Vinebrooke, R. D., K. L. Cottingham, J. Norberg, M. Scheffer, S. I. Dodson, S. C. Maberly, and U. Sommer. 2004. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104:451-457.
Vörösmarty, C. J., et al. 2010. Global threats to human water security and river biodiversity. Nature 467:555-561.
Wang, C., X. Lin, L. Li, L. Lin, and S. Lin. 2017. Glyphosate shapes a dinoflagellate-associated bacterial community while supporting algal growth as sole phosphorus source. Frontiers in Microbiology 8:2530.
Wang, C., X. Lin, L. Li, and S. Lin. 2016. Differential growth responses of marine phytoplankton to herbicide glyphosate. PLoS ONE 11:e0151633.
Wittmer, I. K., H. P. Bader, R. Scheidegger, H. Singer, A. Lück, I. Hanke, C. Carlsson, and C. Stamm. 2010. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters. Water Research 44:2850-2862.
Yamamuro, M., T. Komuro, H. Kamiya, T. Kato, H. Hasegawa, and Y. Kameda. 2019. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366:620-623.
فهرسة مساهمة: Keywords: agricultural pollution; ecological stability; freshwater ecosystems; herbicide glyphosate; multiple stressors; neonicotinoid insecticide imidacloprid; pollution-induced community tolerance; resistance and recovery; synthetic pesticides; water quality guidelines
سلسلة جزيئية: figshare 10.6084/m9.figshare.14977092.v1
المشرفين على المادة: 0 (Agrochemicals)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20210721 Date Completed: 20211020 Latest Revision: 20211020
رمز التحديث: 20240628
DOI: 10.1002/eap.2423
PMID: 34288209
قاعدة البيانات: MEDLINE
الوصف
تدمد:1051-0761
DOI:10.1002/eap.2423