دورية أكاديمية

Emergence of Nonlinear Mixed Selectivity in Prefrontal Cortex after Training.

التفاصيل البيبلوغرافية
العنوان: Emergence of Nonlinear Mixed Selectivity in Prefrontal Cortex after Training.
المؤلفون: Dang W; Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235., Jaffe RJ; Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157., Qi XL; Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157., Constantinidis C; Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 Christos.Constantinidis.1@vanderbilt.edu.; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235.; Neuroscience Program, Vanderbilt University, Nashville, Tennessee 37235.; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
المصدر: The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2021 Sep 01; Vol. 41 (35), pp. 7420-7434. Date of Electronic Publication: 2021 Jul 22.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Society for Neuroscience Country of Publication: United States NLM ID: 8102140 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2401 (Electronic) Linking ISSN: 02706474 NLM ISO Abbreviation: J Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, DC : Society for Neuroscience
Original Publication: [Baltimore, Md.] : The Society, c1981-
مواضيع طبية MeSH: Learning/*physiology , Memory, Short-Term/*physiology , Prefrontal Cortex/*physiology, Animals ; Macaca mulatta ; Male ; Neurons/physiology ; Nonlinear Dynamics ; Saccades/physiology ; Spatial Behavior/physiology
مستخلص: Neurons in the PFC are typically activated by different cognitive tasks, and also by different stimuli and abstract variables within these tasks. A single neuron's selectivity for a given stimulus dimension often changes depending on its context, a phenomenon known as nonlinear mixed selectivity (NMS). It has previously been hypothesized that NMS emerges as a result of training to perform tasks in different contexts. We tested this hypothesis directly by examining the neuronal responses of different PFC areas before and after male monkeys were trained to perform different working memory tasks involving visual stimulus locations and/or shapes. We found that training induces a modest increase in the proportion of PFC neurons with NMS exclusively for spatial working memory, but not for shape working memory tasks, with area 9/46 undergoing the most significant increase in NMS cell proportion. We also found that increased working memory task complexity, in the form of simultaneously storing location and shape combinations, does not increase the degree of NMS for stimulus shape with other task variables. Lastly, in contrast to the previous studies, we did not find evidence that NMS is predictive of task performance. Our results thus provide critical insights on the representation of stimuli and task information in neuronal populations, in working memory. SIGNIFICANCE STATEMENT How multiple types of information are represented in working memory remains a complex computational problem. It has been hypothesized that nonlinear mixed selectivity allows neurons to efficiently encode multiple stimuli in different contexts, after subjects have been trained in complex tasks. Our analysis of prefrontal recordings obtained before and after training monkeys to perform working memory tasks only partially agreed with this prediction, in that nonlinear mixed selectivity emerged for spatial but not shape information, and mostly in mid-dorsal PFC. Nonlinear mixed selectivity also displayed little modulation across either task complexity or correct performance. These results point to other mechanisms, in addition to nonlinear mixed selectivity, representing complex information about stimulus and task context in neuronal activity.
(Copyright © 2021 the authors.)
References: Nat Commun. 2018 Aug 29;9(1):3498. (PMID: 30158519)
PLoS Comput Biol. 2020 Feb 18;16(2):e1007544. (PMID: 32069273)
Brain Inj. 2007 Jan;21(1):21-9. (PMID: 17364516)
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4651-6. (PMID: 22392988)
Exp Aging Res. 2008 Jul-Sep;34(3):188-219. (PMID: 18568979)
Cereb Cortex. 1999 Jul-Aug;9(5):459-75. (PMID: 10450891)
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23021-23032. (PMID: 32859756)
J Neurosci Methods. 2005 Mar 15;142(1):27-34. (PMID: 15652614)
J Neurosci. 2010 Nov 24;30(47):15801-10. (PMID: 21106819)
Curr Opin Neurobiol. 2010 Apr;20(2):177-82. (PMID: 20362427)
Cereb Cortex. 2007 Sep;17 Suppl 1:i70-6. (PMID: 17726005)
Neuron. 2009 Jul 16;63(1):127-38. (PMID: 19607798)
J Clin Exp Neuropsychol. 2002 Sep;24(6):781-91. (PMID: 12424652)
Cogn Affect Behav Neurosci. 2004 Dec;4(4):528-39. (PMID: 15849895)
Nature. 2010 Jun 10;465(7299):775-8. (PMID: 20407435)
J Clin Exp Neuropsychol. 1988 Mar;10(2):279-96. (PMID: 3280591)
Front Comput Neurosci. 2010 Oct 04;4:24. (PMID: 21048899)
J Neurophysiol. 2000 Jul;84(1):451-9. (PMID: 10899218)
Eur J Neurosci. 2015 Jan;41(1):89-96. (PMID: 25307044)
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6829-33. (PMID: 18443283)
Front Syst Neurosci. 2016 Jan 05;9:181. (PMID: 26778980)
Nat Rev Neurosci. 2016 Jul;17(7):438-49. (PMID: 27225070)
Eur J Neurosci. 2012 Dec;36(11):3538-48. (PMID: 22934919)
J Neurosci. 2010 Jan 6;30(1):350-60. (PMID: 20053916)
J Neurosci. 2007 Oct 17;27(42):11306-14. (PMID: 17942725)
J Neurosci. 2013 Feb 27;33(9):3844-56. (PMID: 23447596)
Nat Neurosci. 2017 Dec;20(12):1770-1779. (PMID: 29184197)
Curr Opin Neurobiol. 2016 Apr;37:66-74. (PMID: 26851755)
Annu Rev Psychol. 2012;63:1-29. (PMID: 21961947)
Nat Commun. 2018 Sep 17;9(1):3790. (PMID: 30224705)
Nature. 2013 May 30;497(7451):585-90. (PMID: 23685452)
Neuroimage. 2018 Oct 1;179:51-62. (PMID: 29886143)
Nat Rev Neurosci. 2009 Feb;10(2):113-25. (PMID: 19145235)
J Am Acad Child Adolesc Psychiatry. 2005 Feb;44(2):177-86. (PMID: 15689731)
J Neurosci. 2006 Mar 8;26(10):2745-56. (PMID: 16525054)
Science. 1997 May 2;276(5313):821-4. (PMID: 9115211)
Neuropsychol Rehabil. 2016 Oct;26(5-6):645-72. (PMID: 25886202)
J Neurosci. 2017 Nov 8;37(45):11021-11036. (PMID: 28986463)
Curr Biol. 2017 Oct 23;27(20):3216-3223.e6. (PMID: 29033335)
Front Integr Neurosci. 2018 Aug 07;12:31. (PMID: 30131679)
Cogn Affect Behav Neurosci. 2004 Dec;4(4):444-65. (PMID: 15849890)
J Am Acad Child Adolesc Psychiatry. 2015 Mar;54(3):164-74. (PMID: 25721181)
J Neurosci. 2011 Apr 27;31(17):6266-76. (PMID: 21525266)
Neuron. 2012 Feb 23;73(4):842-53. (PMID: 22365555)
Science. 1997 Nov 7;278(5340):1135-8. (PMID: 9353197)
PLoS One. 2012;7(7):e41053. (PMID: 22848426)
Cereb Cortex. 2011 Dec;21(12):2722-32. (PMID: 21527786)
J Neurophysiol. 2015 Jan 1;113(1):44-57. (PMID: 25298389)
معلومات مُعتمدة: R01 EY017077 United States EY NEI NIH HHS
فهرسة مساهمة: Keywords: monkey; neuron; neurophysiology; prefrontal cortex; working memory
تواريخ الأحداث: Date Created: 20210724 Date Completed: 20211206 Latest Revision: 20220302
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8412986
DOI: 10.1523/JNEUROSCI.2814-20.2021
PMID: 34301827
قاعدة البيانات: MEDLINE
الوصف
تدمد:1529-2401
DOI:10.1523/JNEUROSCI.2814-20.2021