دورية أكاديمية

Pluronic-loaded Silver Nanoparticles/Photosensitizers Nanohybrids: Influence of the Polymer Chain Length on Metal-enhanced Photophysical Properties.

التفاصيل البيبلوغرافية
العنوان: Pluronic-loaded Silver Nanoparticles/Photosensitizers Nanohybrids: Influence of the Polymer Chain Length on Metal-enhanced Photophysical Properties.
المؤلفون: Mota DR; Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil., Lima GAS; Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil., de Oliveira HPM; LACOMB, Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil., Pellosi DS; Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil.
المصدر: Photochemistry and photobiology [Photochem Photobiol] 2022 Jan; Vol. 98 (1), pp. 175-183. Date of Electronic Publication: 2021 Aug 07.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Society for Photobiology Country of Publication: United States NLM ID: 0376425 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-1097 (Electronic) Linking ISSN: 00318655 NLM ISO Abbreviation: Photochem Photobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004->: Lawrence KS : American Society for Photobiology
Original Publication: Augusta, GA: American Society for Photobiology, <1996->
مواضيع طبية MeSH: Metal Nanoparticles*/chemistry , Silver*/chemistry, Photosensitizing Agents ; Poloxamer ; Polymers
مستخلص: Silver nanoparticles (AgNPs) are incredibly versatile nanostructures that more recently have been exploited to create advanced optoelectronic materials due enhancement of local magnetic field after its irradiation. However, the use of AgNPs as nanoantennas to amplify photophysical properties of close photosensitizer (PS) molecules in photodynamic therapy is still underexplored. The reason for that is the difficulty to control crucial parameters such as silver-PS distance in aqueous solution. In this scenario, here we propose a nanohybrid system where AgNP/PS distance is controlled by a thin layer of different Pluronic copolymers. The controllable distance and aqueous stability of proposed nanohybrids allow a tunable enhancement of fluorescence emission and singlet oxygen generation of some selected PS molecules. A detailed mechanism investigation demonstrated that the observed metal-enhanced photophysics is due to magnetic field enhancement close to AgNP surface (AgNP/PS distance-controlled effect) and the resonant coupling of AgNP hot electrons and HOMO-LUMO energies of the PS (AgNP/PS spectral overlap-controlled effect). These results show that the rational design in engineering new nanohybrid structures allowed photophysical improvement of PS molecules in aqueous solution in a tunable way and point out Pluronic-based AgNP/PS nanohybrids as a smart material for further developments aiming at theranostic applications in photodynamic therapy.
(© 2021 American Society for Photobiology.)
References: Mota, D. R., G. A. S. Lima, G. B. Helene and D. S. Pellosi (2020) Tailoring nanoparticle morphology to match application: growth under low-intensity polychromatic light irradiation governs the morphology and optical properties of silver nanoparticles. ACS Appl. Nano Mater. 3, 4893-4903.
Scaiano, J. C. and K. Stamplecoskie (2013) Can surface plasmon fields provide a new way to photosensitize organic photoreactions? From designer nanoparticles to custom applications. J. Phys. Chem. Lett. 4, 1177-1187.
Yu, H., Y. Peng, Y. Yang and Z.-Y. Li (2019) Plasmon-enhanced light-matter interactions and applications. NPJ Comput. Mater. 5, 1-14.
Lee, S. H. and B.-H. Jun (2019) Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 20(4), 865.
Gontero, D., A. V. Veglia and A. G. Bracamonte (2020) In flow metal-enhanced fluorescence for biolabelling and biodetection. Photochem. Photobiol. Sci. 19, 1168-1188.
Zhang, Y., K. Aslan, M. J. R. Previte and C. D. Geddes (2007) Metal-enhanced singlet oxygen generation: A consequence of plasmon enhanced triplet yields. J. Fluoresc. 17, 345-349.
de Melo, L. S. A., A. S. L. Gomes, S. Saska, K. Nigoghossian, Y. Messaddeq, S. J. L. Ribeiro and R. E. de Araujo (2012) Singlet oxygen generation enhanced by silver-pectin nanoparticles. J. Fluoresc. 22, 1633-1638.
Jeong, Y., Y.-M. Kook, K. Lee and W.-G. Koh (2018) Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 111, 102-116.
Loiseau, A., V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain and S. Boujday (2019) Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 9, 78-117.
Drexhage, K. H. (1974) IV interaction of light with monomolecular dye layers. In Progress in Optics, Vol. 12 (Edited by E. Wolf), pp. 163-232. Elsevier.
Aslan, K., I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz and C. D. Geddes (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol. 16, 55-62.
Taguchi, A., J. Yu, P. Verma and S. Kawata (2015) Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale 7, 17424-17433.
Macia, N., V. Kabanov, M. Côté-Cyr and B. Heyne (2019) Roles of near and far fields in plasmon-enhanced singlet oxygen production. J. Phys. Chem. Lett. 10, 3654-3660.
Dadhich, B. K., I. Kumar, R. K. Choubey, B. Bhushan and A. Priyam (2017) Shape and size dependent nonlinear refraction and absorption in citrate-stabilized, near-IR plasmonic silver nanopyramids. Photochem. Photobiol. Sci. 16, 1556-1562.
Kaja, S., D. P. Damera and A. Nag (2020) A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium. Anal. Chim. Acta 1129, 12-23.
Falco, W. F., A. M. Queiroz, J. Fernandes, E. R. Botero, E. A. Falcão, F. E. G. Guimarães, J.-C. M’Peko, S. L. Oliveira, I. Colbeck and A. R. L. Caires (2015) Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching. J. Photochem. Photobiol. Chem. 299, 203-209.
Silva, M. M., D. R. Mota, C. B. Silva, H. P. M. de Oliveira and D. S. Pellosi (2020) Synthesis of Pluronic-based silver nanoparticles/methylene blue nanohybrids: Influence of the metal shape on photophysical properties. Mater. Sci. Eng. C Mater. Biol. Appl. 114, 110987.
Macdonald, I. J. and T. J. Dougherty (2001) Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 05, 105-129.
Pellosi, D. S., L. B. Paula, M. T. de Melo and A. C. Tedesco (2019) Targeted and synergic glioblastoma treatment: multifunctional nanoparticles delivering verteporfin as adjuvant therapy for temozolomide chemotherapy. Mol. Pharm. 16, 1009-1024.
Pellosi, D. S., P. D. C. C. De Jesus and A. C. Tedesco (2017) Spotlight on the delivery of photosensitizers: different approaches for photodynamic-based therapies. Expert Opin. Drug Deliv. 14, 1395-1406.
Openda, Y. I., R. Matshitse and T. Nyokong (2020) A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine-detonation nanodiamond-Ag nanoconjugates. Photochem. Photobiol. Sci. 19, 1442-1454.
Macia, N., R. Bresoli-Obach, S. Nonell and B. Heyne (2019) Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J. Am. Chem. Soc. 141, 684-692.
Planas, O., N. Macia, M. Agut, S. Nonell and B. Heyne (2016) Distance-dependent plasmon-enhanced singlet oxygen production and emission for bacterial inactivation. J. Am. Chem. Soc. 138, 2762-2768.
Zhang, Y., K. Aslan, M. J. R. Previte and C. D. Geddes (2008) Plasmonic engineering of singlet oxygen generation. Proc. Natl. Acad. Sci. 105, 1798-1802.
Yaraki, M. T., F. Hu, S. D. Rezaei, B. Liu and Y. N. Tan (2020) Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. Nanoscale Adv. 2, 2859-2869.
Hu, B., X. Cao, K. Nahan, J. Caruso, H. Tang and P. Zhang (2014) Surface plasmon-photosensitizer resonance coupling: an enhanced singlet oxygen production platform for broad-spectrum photodynamic inactivation of bacteria. J. Mater. Chem. B 2, 7073-7081.
Pawar, S., A. Bhattacharya and A. Nag (2019) Metal-enhanced fluorescence study in aqueous medium by coupling gold nanoparticles and fluorophores using a bilayer vesicle platform. ACS Omega 4, 5983-5990.
Li, S., X. Shen, Q.-H. Xu and Y. Cao (2019) Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. Nanoscale 11, 19551-19560.
Khaliq, N. U., D. Y. Park, B. M. Yun, D. H. Yang, Y. W. Jung, J. H. Seo, C. S. Hwang and S. H. Yuk (2019) Pluronics: Intelligent building units for targeted cancer therapy and molecular imaging. Int. J. Pharm. 556, 30-44.
Russo, E. and C. Villa (2019) Poloxamer hydrogels for biomedical applications. Pharmaceutics 11, 671-688.
de Freitas, C. F., D. S. Pellosi, B. M. Estevão, I. R. Calori, T. M. Tsubone, M. J. Politi, W. Caetano and N. Hioka (2016) Nanostructured polymeric micelles carrying xanthene dyes for photodynamic evaluation. Photochem. Photobiol. 92, 790-799.
Elemans, J. A. A. W., A. E. Rowan and R. J. M. Nolte (2003) Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661-2670.
Alexandridis, P., J. F. Holzwarth and T. A. Hatton (1994) Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of copolymer association. Macromolecules 27, 2414-2425.
Bykkam, S., M. Ahmadipour, S. Narisngam, K. Rao and S. Chidurala (2015) Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanoparticles 04, 1-10.
Estevão, B. M., D. S. Pellosi, C. F. de Freitas, D. Vanzin, D. S. Franciscato, W. Caetano and N. Hioka (2014) Interaction of eosin and its ester derivatives with aqueous biomimetic micelles: Evaluation of photodynamic potentialities. J. Photochem. Photobiol. Chem. 287, 30-39.
Fernandez, J. M., M. D. Bilgin and L. I. Grossweiner (1997) Singlet oxygen generation by photodynamic agents. J. Photochem. Photobiol. B 37, 131-140.
Rabello, B. R., A. P. Gerola, D. S. Pellosi, A. L. Tessaro, J. L. Aparício, W. Caetano and N. Hioka (2012) Singlet oxygen dosimetry using uric acid as a chemical probe: Systematic evaluation. J. Photochem. Photobiol. Chem. 238, 53-62.
Batista, C. C. S., L. J. C. Albuquerque, C. A. S. Ribeiro, C. E. de Castro, E. G. A. Miranda, I. L. Nantes, B. L. Albuquerque, M. B. Cardoso, F. C. Giacomelli, C. C. S. Batista, L. J. C. Albuquerque, C. A. S. Ribeiro, C. E. de Castro, E. G. A. Miranda, I. L. Nantes, B. L. Albuquerque, M. B. Cardoso and F. C. Giacomelli (2017) Nano-sized silver colloids produced and stabilized by amino-functionalized polymers: polymer structure-nanoparticle features and polymer structure-growth kinetics relationships. J. Braz. Chem. Soc. 28, 1608-1618.
Verma, P., S. Nath, P. K. Singh, M. Kumbhakar and H. Pal (2008) Effects of block size of pluronic polymers on the water structure in the corona region and its effect on the electron transfer reactions. J. Phys. Chem. B 112, 6363-6372.
Junqueira, M. V., F. B. Borghi-Pangoni, S. B. S. Ferreira, B. R. Rabello, N. Hioka and M. L. Bruschi (2016) Functional polymeric systems as delivery vehicles for methylene blue in photodynamic therapy. Langmuir 32, 19-27.
Sahu, A., N. Kasoju, P. Goswami and U. Bora (2010) Encapsulation of curcumin in pluronic block copolymer micelles for drug delivery applications. J. Biomater. Appl. 25, 619-639.
Vilsinski, B. H., A. P. Gerola, J. A. Enumo, K. da Campanholi, P. C. S. Pereira, G. Braga, N. Hioka, E. Kimura, A. L. Tessaro and W. Caetano (2015) Formulation of aluminum chloride phthalocyanine in pluronic™ P-123 and F-127 block copolymer micelles: photophysical properties and photodynamic inactivation of microorganisms. Photochem. Photobiol. 91, 518-525.
Davanzo, N. N., D. S. Pellosi, L. P. Franchi and A. C. Tedesco (2017) Light source is critical to induce glioblastoma cell death by photodynamic therapy using chloro-aluminiumphtalocyanine albumin-based nanoparticles. Photodiagnosis Photodyn. Ther. 19, 181-183.
Rurack, K. (2008) Fluorescence quantum yields: methods of determination and standards. In Standardization and Quality Assurance in Fluorescence Measurements I: Techniques (Edited by U. Resch-Genger) Springer Series on Fluorescence, pp. 101-145. Springer, Berlin, Heidelberg.
Pellosi, D. S., B. M. Estevão, J. Semensato, D. Severino, M. S. Baptista, M. J. Politi, N. Hioka and W. Caetano (2012) Photophysical properties and interactions of xanthene dyes in aqueous micelles. J. Photochem. Photobiol. Chem. 247, 8-15.
Gerola, A. P., J. Semensato, D. S. Pellosi, V. R. Batistela, B. R. Rabello, N. Hioka and W. Caetano (2012) Chemical determination of singlet oxygen from photosensitizers illuminated with LED: New calculation methodology considering the influence of photobleaching. J. Photochem. Photobiol. Chem. 232, 14-21.
Abdulhalim, I. (2018) Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement. Nanophotonics 7, 1891-1916.
Singha, D., D. K. Sahu and K. Sahu (2017) Coupling of molecular transition with the surface plasmon resonance of silver nanoparticles inside the restricted environment of reverse micelles. ACS Omega 2, 5494-5503.
Guzatov, D. V., S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov and S. V. Gaponenko (2012) Plasmonic enhancement of molecular fluorescence near silver nanoparticles: Theory, modeling, and experiment. J. Phys. Chem. C 116, 10723-10733.
Chen, Y., K. Munechika and D. S. Ginger (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690-696.
Li, J., A. V. Krasavin, L. Webster, P. Segovia, A. V. Zayats and D. Richards (2016) Spectral variation of fluorescence lifetime near single metal nanoparticles. Sci. Rep. 6, 21349-21359.
Chignell, C. F., P. Bilski, K. J. Reszka, A. G. Motten, R. H. Sik and T. A. Dahl (1994) Spectral and photochemical properties of curcumin. Photochem. Photobiol. 59, 295-302.
Shahinyan, G. A., A. Y. Amirbekyan and S. A. Markarian (2019) Photophysical properties of methylene blue in water and in aqueous solutions of dimethylsulfoxide. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 217, 170-175.
المشرفين على المادة: 0 (Photosensitizing Agents)
0 (Polymers)
106392-12-5 (Poloxamer)
3M4G523W1G (Silver)
تواريخ الأحداث: Date Created: 20210726 Date Completed: 20220422 Latest Revision: 20220422
رمز التحديث: 20221213
DOI: 10.1111/php.13492
PMID: 34309861
قاعدة البيانات: MEDLINE
الوصف
تدمد:1751-1097
DOI:10.1111/php.13492