دورية أكاديمية

Computer vision for detecting field-evolved lepidopteran resistance to Bt maize.

التفاصيل البيبلوغرافية
العنوان: Computer vision for detecting field-evolved lepidopteran resistance to Bt maize.
المؤلفون: Dorman SJ; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA., Kudenov MW; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA., Lytle AJ; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA., Griffith EH; Department of Statistics, North Carolina State University, Raleigh, NC, USA., Huseth AS; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
المصدر: Pest management science [Pest Manag Sci] 2021 Nov; Vol. 77 (11), pp. 5236-5245. Date of Electronic Publication: 2021 Aug 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published for SCI by Wiley Country of Publication: England NLM ID: 100898744 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1526-4998 (Electronic) Linking ISSN: 1526498X NLM ISO Abbreviation: Pest Manag Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
مواضيع طبية MeSH: Bacillus thuringiensis*/genetics , Moths*/genetics, Animals ; Bacterial Proteins/genetics ; Computers ; Endotoxins/genetics ; Hemolysin Proteins/genetics ; Humans ; Insecticide Resistance/genetics ; Pest Control, Biological ; Plants, Genetically Modified/genetics ; Zea mays/genetics
مستخلص: Background: Resistance evolution of lepidopteran pests to Bacillus thuringiensis (Bt) toxins produced in maize and cotton is a significant issue worldwide. Effective toxin stewardship requires reliable detection of field-evolved resistance to enable the implementation of mitigation strategies. Currently, visual estimates of maize injury are used to document changing susceptibility. In this study, we evaluated an existing maize injury monitoring protocol used to estimate Bt resistance levels in Helicoverpa zea (Lepidoptera: Noctuidae).
Results: We detected high interobserver variability across multiple injury metrics, suggesting that the precision and accuracy of maize injury detection could be improved. To do this, we developed a computer vision-based algorithm to measure H. zea injury. Algorithm estimates were more accurate and precise than a sample of human observers. Moreover, observer estimates tended to overpredict H. zea injury, which may increase the false-positive rate, leading to prophylactic insecticide application and unnecessary regulatory action.
Conclusions: Automated detection and tracking of lepidopteran resistance evolution to Bt toxins are critical for genetically engineered crop stewardship to prevent the use of additional insecticides to combat resistant pests. Advantages of this computerized screening are: (i) standardized Bt injury metrics in space and time, (ii) preservation of digital data for cross-referencing when thresholds are reached, and (iii) the ability to increase sample sizes significantly. This technological solution represents a significant step toward improving confidence in resistance monitoring efforts among researchers, regulators and the agricultural biotechnology industry.
(© 2021 Society of Chemical Industry.)
References: Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MMC, Hartley SE et al., Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203-208 (2008).
Lu Y, Wu K, Jiang Y, Guo Y and Desneux N, Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362-365 (2012).
Smyth SJ, Kerr WA and Phillips PWB, Global economic, environmental and health benefits from GM crop adoption. Glob Food Sec 7:24-29 (2015).
James C, 20th Anniversary (1996 to 2015) of the Global Commercialization of Biotech Crops and Biotech Crop Highlights in 2015. International Service for the Acquisition of Agri-Biotech Applications. ISAAA Brief No. 21. (2015). Available: http://www.isaaa.org/resources/publications/briefs/51/.
Marvier M, Mccreedy C, Regetz J and Kareiva PA, Meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475-1477 (2007).
Klümper W and Qaim M, A meta-analysis of the impacts of genetically modified crops. PLoS One 9:1-7 (2014).
Dively GP, Venugopal PD, Bean D, Whalen J, Holmstrom K, Kuhar TP et al., Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers. Proc Natl Acad Sci USA 115:3320-3325 (2018).
Coupe RH and Capel PD, Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States. Pest Manag Sci 72:1013-1022 (2018).
U.S. Environmental Protection Agency (US EPA) White Paper on Resistance in Lepidopteran Pests of Bacillus thuringiensis (Bt) Plant-Incorporated Protectants in the United States (2018). https://www.epa.gov/sites/default/files/2018-07/documents/position_paper_07132018.pdf [accessed 1 March 2021].
U.S. Environmental Protection Agency (US EPA) EPA Draft Proposal to Address Resistance Risks to Lepidopteran Pests of Bt Following the July 2018 FIFRA Scientific Advisory Panel Recommendation (EPA-HQ-OPP-2019-0682-0007) (2020). https://www.regulations.gov/document/EPA-HQ-OPP-2019-0682-0007 [accessed 1 March 2021].
U.S. Environmental Protection Agency (US EPA) The Environmental Protection Agency's White Paper on Bt Plant-Pesticide Resistance Management (EPA Publication 739-S-98-001) (1998). https://nepis.epa.gov/Exe/ZyPDF.cgi/20000TQB.PDF?Dockey=20000TQB.PDF [accessed 1 March 2021].
Gould F, Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701-726 (1998).
Tabashnik BE, Gassmann AJ, Crowder DW and Carrière Y, Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199-202 (2008).
Tabashnik BE, Brévault T and Carrière Y, Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510-521 (2013).
Blanco CA, Portilla M, Jurat-Fuentes JL, Sánchez JF, Viteri D, Vega-Aquino P et al., Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southwest Entomol 35:409-415 (2010).
Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW et al., Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031-1038 (2010).
Storer NP, Kubiszak ME, Ed King J, Thompson GD and Santos AC, Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J Invertebr Pathol 110:294-300 (2012).
Huang F, Qureshi JA, Meagher RL, Reisig DD, Head GP, Andow DA et al., Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLoS One 9:1-10 (2014).
Reisig DD and Reay-Jones FPF, Inhibition of Helicoverpa zea (Lepidoptera: Noctuidae) growth by transgenic corn expressing Bt toxins and development of resistance to Cry1Ab. Environ Entomol 44:1275-1285 (2015).
Dively GP, Venugopal PD and Finkenbinder C, Field-evolved resistance in corn earworm to cry proteins expressed by transgenic sweet corn. PLoS One 11:1-22 (2016).
Ostrem J, Pan Z, Flexner J, Owens E, Binning R and Higgins L, Monitoring susceptibility of western bean cutworm (Lepidoptera: Noctuidae) field populations to Bacillus thuringiensis Cry1F protein. J Econ Entomol 109:847-853 (2016).
Bilbo TR, Reay-Jones FPF, Reisig DD and Greene JK, Susceptibility of corn earworm (Lepidoptera: Noctuidae) to Cry1A.105 and Cry2Ab2 in North and South Carolina. J Econ Entomol 112:1845-1857 (2019).
Kaur G, Guo J, Brown S, Head GP, Price PA, Paula-Moraes S et al., Field-evolved resistance of Helicoverpa zea (Boddie) to transgenic maize expressing pyramided Cry1A.105/Cry2Ab2 proteins in Northeast Louisiana, the United States. J Invertebr Pathol 163:11-20 (2019).
Williams MR, Cotton insect losses. In Proceedings of the 2017 Beltwide Cotton Conference, Dallas, TX, pp. 710-754 (2017).
Reay-Jones FPF, Pest status and management of corn earworm (Lepidoptera: Noctuidae) in field corn in the United States. J Integr Pest Manag 10:1-9 (2019).
Carrière Y, Degain BA and Tabashnik BE, Effects of gene flow between Bt and non-Bt plants in a seed mixture of Cry1A.105 + Cry2Ab corn on performance of corn earworm in Arizona. Pest Manag Sci 77:2106-2113 (2021).
Terry I, Bradley JR and Van Duyn JW, Survival and development of Heliothis zea (Lepidoptera: Noctuidae) larvae on selected soybean growth stages. Environ Entomol 16:441-445 (1987).
Durant JA, Effect of treatment regimen on control of Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae) on cotton. J Econ Entomol 84:1577-1584 (1991).
Gore J, Leonard BR and Gable RH, Distribution of bollworm, Helicoverpa zea (Boddie), injured reproductive structures on genetically engineered Bacillus thuringiensis var. kurstaki Berliner cotton. J Econ Entomol 96:699-705 (2003).
Jackson RE, Bradley JR, Van Duyn J, Leonard BR, Allen KC, Luttrell R et al., Regional assessment of Helicoverpa zea populations on cotton and non-cotton crop hosts. Entomol Exp Appl 126:89-106 (2008).
Welch KL, Unnithan GC, Degain BA, Wei J, Zhang J, Li X et al., Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J Invertebr Pathol 132:149-156 (2015).
Tabashnik BE and Carrière Y, Evaluating cross-resistance between Vip and Cry toxins of Bacillus thuringiensis. J Econ Entomol 113:553-561 (2020).
Burkness EC, Hutchison WD, Bolin PC, Bartels DW, Warnock DF and Davis DW, Field efficacy of sweet corn hybrids expressing a Bacillus thuringiensis toxin for management of Ostrinia nubilalis (Lepidoptera: Crambidae) and Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 94:197-203 (2001).
Yang F, Kerns DL, Leonard BR, Oyediran I, Burd T, Niu Y et al., Performance of Agrisure® Viptera™ 3111 corn against Helicoverpa zea (Lepidoptera: Noctuidae) in seed mixed plantings. Crop Prot 69:77-82 (2015).
Yang F, González JCS, Little N, Reisig D, Payne G, Dos Santos RF et al., First documentation of major Vip3Aa resistance alleles in field populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Texas, USA. Sci Rep 10:5867 (2020).
Yang F, Santiago González JC, Williams J, Cook DC, Gilreath RT and Kerns DL, Occurrence and ear damage of Helicoverpa zea on transgenic Bacillus thuringiensis maize in the field in Texas, U.S. and its susceptibility to Vip3A protein. Toxins (Basel) 11:1-13 (2019).
Dively GP, Kuhar TP, Taylor S, Doughty HB, Holmstrom K, Gilrein D et al., Sweet corn sentinel monitoring for lepidopteran field-evolved resistance to Bt toxins. J Econ Entomol 114:307-319 (2020).
Venette RC, Hutchison WD and Andow DA, An in-field screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in transgenic crops. J Econ Entomol 93:1055-1064 (2000).
Andow DA and Alstad DN, F2 screen for rare resistance alleles. J Econ Entomol 91:572-578 (1998).
Warman C, Sullivan CM, Preece J, Buchanan ME, Vejlupkova Z, Jaiswal P et al., A cost-effective maize ear phenotyping platform enables rapid categorization and quantification of kernels. bioRxiv 106:566-579 (2021).
Grosjean P, Ibanez F, Etienne M, Pastecs: package for analysis of space-time ecological series. R package version 1.3.2. Available: https://cran.r-project.org/web/packages/pastecs/pastecs.pdf [1 March 2021].
Revelle W, psych: procedures for psychological, psychometric, and personality research. R package version 2.0.12. Available: https://CRAN.R-project.org/package=psych [1 March 2021].
Shrout PE and Fleiss JL, Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420-428 (1979).
Koo TK and Li MY, A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155-163 (2016).
Bates DM, Maechler M, Bolker B and Walker S, Fitting linear mixed-effects models using lme4. J Stat Softw 67:1-48 (2015).
Champely S, pwr: basic functions for power analysis. R package version 1.3.0. Available: https://cran.r-project.org/web/packages/pwr/pwr.pdf [1 March 2021].
Croissant Y and Millo G, Panel data econometrics in R: the plm package. J Stat Softw 27:1-43 (2008).
Hamner B, Frasco M, Metrics: evaluation metrics for machine learning. R package version 0.1.4. Available: https://cran.r-project.org/web/packages/Metrics/Metrics.pdf [1 March 2021].
Cribari-Neto F and Zeileis A, Beta regression in R. J Stat Softw 34:1-24 (2010).
Lenth R, emmeans: estimated marginal means, aka least-squares means. R package version 1.2.4. Available: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf [1 March 2021].
Goodenough AE, Carpenter WS, McTavish L, Blades B, Clarke E, Griffiths S et al., The impact of inter-observer variability on the accuracy, precision and utility of a commonly-used grassland condition index. Ecol Indic 117:106664 (2020).
Ranganathan K, Kavitha L, Sharada P, Bavle RM, Rao RS, Pattanshetty SM et al., Intra-observer and inter-observer variability in two grading systems for oral epithelial dysplasia: a multi-centre study in India. J Oral Pathol Med 49:948-955 (2020).
Reay-Jones FPF, Bilbo TR and Reisig DD, Sampling transgenic corn producing Bt toxins for corn earworm injury. J Econ Entomol 111:1446-1453 (2018).
Horner TA, Dively GP and Herbert DA, Development, survival and fitness performance of Helicoverpa zea (Lepidoptera: Noctuidae) in MON810 Bt field corn. J Econ Entomol 96:914-924 (2003).
Gould F, Anderson A, Landis D and Van Mellaert H, Feeding behavior and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations or endotoxins. Entomol Exp Appl 58:199-210 (1991).
Dowd PF, Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J Econ Entomol 94:1067-1074 (2001).
Carrière Y, Degain BA, Harpold VS, Unnithan GC and Tabashnik BE, Gene flow between Bt and non-Bt plants in a seed mixture increases dominance of resistance to pyramided Bt corn in Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 113:2041-2051 (2020).
Campbell AM, Racault MF, Goult S and Laurenson A, Cholera risk: a machine learning approach applied to essential climate variables. Int J Environ Res Public Health 17:1-24 (2020).
Tabashnik BE and Carrière Y, Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926-935 (2017).
Reisig DD, Huseth AS, Bacheler JS, Aghaee MA, Braswell L, Burrack HJ et al., Long-term empirical and observational evidence of practical Helicoverpa zea resistance to cotton with pyramided Bt toxins. J Econ Entomol 111:1824-1833 (2018).
Reisig DD and Kurtz R, Bt resistance implications for Helicoverpa zea (Lepidoptera: Noctuidae) insecticide resistance management in the United States. Environ Entomol 47:1357-1364 (2018).
معلومات مُعتمدة: Biotechnology Risk Assessment competitive grant no. 2020-33522-32272; Crop Protection and Pest Management competitive grant no. 2017-70006-27205
فهرسة مساهمة: Keywords: Bt crops; Helicoverpa zea; corn earworm; engineering application; resistance detection
المشرفين على المادة: 0 (Bacterial Proteins)
0 (Endotoxins)
0 (Hemolysin Proteins)
تواريخ الأحداث: Date Created: 20210726 Date Completed: 20211007 Latest Revision: 20211007
رمز التحديث: 20240628
DOI: 10.1002/ps.6566
PMID: 34310008
قاعدة البيانات: MEDLINE
الوصف
تدمد:1526-4998
DOI:10.1002/ps.6566