دورية أكاديمية

Activation of cAMP-dependent phosphorylation pathways is independent of ROS production during mouse sperm capacitation.

التفاصيل البيبلوغرافية
العنوان: Activation of cAMP-dependent phosphorylation pathways is independent of ROS production during mouse sperm capacitation.
المؤلفون: Takei GL; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA., Tourzani DA; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA., Paudel B; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA., Visconti PE; Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA.
المصدر: Molecular reproduction and development [Mol Reprod Dev] 2021 Aug; Vol. 88 (8), pp. 544-557. Date of Electronic Publication: 2021 Jul 27.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8903333 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-2795 (Electronic) Linking ISSN: 1040452X NLM ISO Abbreviation: Mol Reprod Dev Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005-> : Hoboken, N.J. : Wiley-Liss
Original Publication: New York, NY : A.R. Liss, 1988-
مواضيع طبية MeSH: Cyclic AMP/*metabolism , Cyclic AMP-Dependent Protein Kinases/*metabolism , Reactive Oxygen Species/*metabolism , Signal Transduction/*physiology , Sperm Capacitation/*physiology , Spermatozoa/*metabolism, Animals ; Calcium/metabolism ; Catalase/metabolism ; Male ; Mice ; Phosphorylation ; Superoxide Dismutase/metabolism
مستخلص: Mammalian sperm have to undergo capacitation to fertilize the egg. At the molecular level, capacitation involves cAMP synthesis, protein kinase A activation, and downstream increase in tyrosine phosphorylation. In addition, during capacitation, mammalian sperm actively generate reactive oxygen species (ROS). It has been proposed that ROS modulate phosphorylation pathways; however, the crosstalk between these signaling processes is not well-understood. In the present study, we used loss- and gain-of-function approaches to evaluate the interconnection between ROS and phosphorylation. We showed that BSA and HCO 3 - , but not Ca 2+ , in the capacitation media are required for ROS production. The synergic effect of these compounds was neither mediated by HCO 3 - stimulation of cAMP synthesis nor by BSA-induced cholesterol efflux. The capacitation-induced ROS generation was blocked in the presence of superoxide dismutase (SOD), catalase, and apocynin. However, none of these compounds affected cAMP-dependent or tyrosine phosphorylation. On the other hand, the addition of NADPH to the media induced ROS generation in sperm incubated in the absence of BSA and HCO 3 - without upregulating cAMP-dependent or tyrosine phosphorylation signaling. Most interestingly, catalase, but not SOD, blocked in vitro fertilization suggesting a role for H 2 O 2 in this process.
(© 2021 Wiley Periodicals LLC.)
References: Aitken, R. J. (2017). Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular Reproduction and Development, 84(10), 1039-1052.
Aitken, R. J., Baker, M. A., & O'Bryan, M. (2004). Shedding light on chemiluminescence: the application of chemiluminescence in diagnostic andrology. Journal of Andrology, 25(4), 455-465.
Aitken, R. J., Harkiss, D., Knox, W., Paterson, M., & Irvine, D. S. (1998). A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. Journal of Cell Science, 111(Pt 5), 645-656.
Aitken, R. J., Paterson, M., Fisher, H., Buckingham, D. W., & Duin, M. (1995). Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. Journal of Cell Science, 108(Pt 5), 2017-2025.
Aitken, R. J., Ryan, A. L., Curry, B. J., & Baker, M. A. (2003). Multiple forms of redox activity in populations of human spermatozoa. Molecular Human Reproduction, 9(11), 645-661.
Alvarez, J. G., & Storey, B. T. (1982). Spontaneous lipid peroxidation in rabbit epididymal spermatozoa: its effect on sperm motility. Biology of Reproduction, 27(5), 1102-1108.
Alvarez, J. G., Touchstone, J. C., Blasco, L., & Storey, B. T. (1987). Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. Journal of Andrology, 8(5), 338-348.
Alvau, A., Battistone, M. A., Gervasi, M. G., Navarrete, F. A., Xu, X., Sánchez-Cárdenas, C., De la Vega-Beltran, J. L., Da Ros, V. G., Greer, P. A., Darszon, A., Krapf, D., Salicioni, A. M., Cuasnicu, P. S., & Visconti, P. E. (2016). The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm. Development, 143(13), 2325-2333.
Armstrong, J. S., Bivalacqua, T. J., Chamulitrat, W., Sikka, S., & Hellstrom, W. J. (2002). A comparison of the NADPH oxidase in human sperm and white blood cells. International Journal of Andrology, 25(4), 223-229.
Balbach, M., Gervasi, M. G., Hidalgo, D. M., Visconti, P. E., Levin, L. R., & Buck, J. (2020). Metabolic changes in mouse sperm during capacitation dagger. Biology of Reproduction, 103(4), 791-801. https://doi.org/10.1093/biolre/ioaa114.
Bize, I., Santander, G., Cabello, P., Driscoll, D., & Sharpe, C. (1991). Hydrogen peroxide is involved in hamster sperm capacitation in vitro. Biology of Reproduction, 44(3), 398-403. https://doi.org/10.1095/biolreprod44.3.398.
Brütsch, S. H., Rademacher, M., Roth, S. R., Müller, K., Eder, S., Viertel, D., Franz, C., Kuhn, H., & Borchert, A. (2016). Male subfertility induced by heterozygous expression of catalytically inactive glutathione peroxidase 4 is rescued in vivo by systemic inactivation of the Alox15 gene. Journal of Biological Chemistry, 291(45), 23578-23588.
Buck, J., Sinclair, M. L., Schapal, L., Cann, M. J., & Levin, L. R. (1999). Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proceedings of the National Academy of Sciences of the United States of America, 96(1), 79-84.
Chen, Y., Cann, M. J., Litvin, T. N., Iourgenko, V., Sinclair, M. L., Levin, L. R., & Buck, J. (2000). Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science, 289(5479), 625-628.
Chijiwa, T., Mishima, A., Hagiwara, M., Sano, M., Hayashi, K., Inoue, T., Naito, K., Toshioka, T., & Hidaka, H. (1990). Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. Journal of Biological Chemistry, 265(9), 5267-5272.
Cormier, M. J., & Prichard, P. M. (1968). An investigation of the mechanism of the luminescent peroxidation of luminol by stopped flow techniques. Journal of Biological Chemistry, 243(18), 4706-4714.
Ecroyd, H. W., Jones, R. C., & Aitken, R. J. (2003). Endogenous redox activity in mouse spermatozoa and its role in regulating the tyrosine phosphorylation events associated with sperm capacitation. Biology of Reproduction, 69(1), 347-354.
Esposito, G., Jaiswal, B. S., Xie, F., Krajnc-Franken, M. A., Robben, T. J., Strik, A. M., Kuil, C., Philipsen, R. L., Duin, M., Conti, M., & Gossen, J. A. (2004). Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2993-2998.
Fischer, K. A., Van Leyen, K., Lovercamp, K. W., Manandhar, G., Sutovsky, M., Feng, D., Safranski, T., & Sutovsky, P. (2005). 15-Lipoxygenase is a component of the mammalian sperm cytoplasmic droplet. Reproduction, 130(2), 213-222.
Gervasi, M. G., & Visconti, P. E. (2016). Chang's meaning of capacitation: A molecular perspective. Molecular Reproduction and Development, 83(10), 860-874.
Goodson, S. G., Zhang, Z., Tsuruta, J. K., Wang, W., & O'Brien, D. A. (2011). Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biology of Reproduction, 84(6), 1207-1215.
Hess, K. C., Jones, B. H., Marquez, B., Chen, Y., Ord, T. S., Kamenetsky, M., Miyamoto, C., Zippin, J. H., Kopf, G. S., Suarez, S. S., Levin, L. R., Williams, C. J., Buck, J., & Moss, S. B. (2005). The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Developmental Cell, 9(2), 249-259.
Houston, B., Curry, B., & Aitken, R. J. (2015). Human spermatozoa possess an IL4I1 l-amino acid oxidase with a potential role in sperm function. Reproduction, 149(6), 587-596.
Kodama, H., Kuribayashi, Y., & Gagnon, C. (1996). Effect of sperm lipid peroxidation on fertilization. Journal of Andrology, 17(2), 151-157.
Koppers, A. J., De Iuliis, G. N., Finnie, J. M., McLaughlin, E. A., & Aitken, R. J. (2008). Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. Journal of Clinical Endocrinology and Metabolism, 93(8), 3199-3207.
Kuribayashi, Y., & Gagnon, C. (1996). Effect of catalase and thioredoxin addition to sperm incubation medium before in vitro fertilization on sperm capacity to support embryo development. Fertility and Sterility, 66(6), 1012-1017.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
Lamirande, E., & Gagnon, C. (1993). A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. International Journal of Andrology, 16(1), 21-25.
Lamirande, E., & Gagnon, C. (1995). Capacitation-associated production of superoxide anion by human spermatozoa. Free Radical Biology and Medicine, 18(3), 487-495.
Leclerc, P., Lamirande, E., & Gagnon, C. (1997). Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radical Biology and Medicine, 22(4), 643-656.
Lewis, B., & Aitken, R. J. (2001). A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. Journal of Andrology, 22(4), 611-622.
Navarrete, F. A., Aguila, L., Martin-Hidalgo, D., Tourzani, D. A., Luque, G. M., Ardestani, G., Garcia-Vazquez, F. A., Levin, L. R., Buck, J., Darszon, A., Buffone, M. G., Mager, J., Fissore, R. A., Salicioni, A. M., Gervasi, M. G., & Visconti, P. E. (2019). Transient sperm starvation improves the outcome of assisted reproductive technologies. Frontiers in Cell and Developmental Biology, 7, 262. https://doi.org/10.3389/fcell.2019.00262.
Navarrete, F. A., García-Vázquez, F. A., Alvau, A., Escoffier, J., Krapf, D., Sánchez-Cárdenas, C., Salicioni, A. M., Darszon, A., & Visconti, P. E. (2015). Biphasic role of calcium in mouse sperm capacitation signaling pathways. Journal of Cellular Physiology, 230(8), 1758-1769.
Nolan, M. A., Babcock, D. F., Wennemuth, G., Brown, W., Burton, K. A., & McKnight, G. S. (2004). Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proceedings of the National Academy of Sciences of the United States of America, 101(37), 13483-13488.
O'Flaherty, C., Beorlegui, N., & Beconi, M. T. (2003). Participation of superoxide anion in the capacitation of cryopreserved bovine sperm. International Journal of Andrology, 26(2), 109-114.
O'Flaherty, C., Lamirande, E., & Gagnon, C. (2006). Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radical Biology and Medicine, 40(6), 1045-1055.
O'Flaherty, C. M., Beorlegui, N. B., & Beconi, M. T. (1999). Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology, 52(2), 289-301.
Ramos-Espiritu, L., Kleinboelting, S., Navarrete, F. A., Alvau, A., Visconti, P. E., Valsecchi, F., Starkov, A., Manfredi, G., Buck, H., Adura, C., Zippin, J. H., den Heuvel, J., Glickman, J. F., Steegborn, C., Levin, L. R., & Buck, J. (2016). Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nature Chemical Biology, 12(10), 838-844.
Richer, S. C., & Ford, W. C. (2001). A critical investigation of NADPH oxidase activity in human spermatozoa. Molecular Human Reproduction, 7(3), 237-244.
Rivlin, J., Mendel, J., Rubinstein, S., Etkovitz, N., & Breitbart, H. (2004). Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biology of Reproduction, 70(2), 518-522.
Stolk, J., Hiltermann, T. J., Dijkman, J. H., & Verhoeven, A. J. (1994). Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. American Journal of Respiratory Cell and Molecular Biology, 11(1), 95-102.
Takeo, T., Hoshii, T., Kondo, Y., Toyodome, H., Arima, H., Yamamura, K., Irie, T., & Nakagata, N. (2008). Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biology of Reproduction, 78(3), 546-551.
Toyoda, Y., Yokoyama, M., & Hosi, T. (1971). Studies on the fertilization of mouse eggs in vitro. I. In vitro fertilization of eggs by fresh epididymal sperm. Jpn J Anim Reprod, 16, 147-151.
Travis, A. J., Jorgez, C. J., Merdiushev, T., Jones, B. H., Dess, D. M., Diaz-Cueto, L., Storey, B. T., Kopf, G. S., & Moss, S. B. (2001). Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. Journal of Biological Chemistry, 276(10), 7630-7636.
Visconti, P. E., Bailey, J. L., Moore, G. D., Pan, D., Olds-Clarke, P., & Kopf, G. S. (1995). Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development, 121(4), 1129-1137.
Visconti, P. E., Galantino-Homer, H., Ning, X., Moore, G. D., Valenzuela, J. P., Jorgez, C. J., Alvarez, J. G., & Kopf, G. S. (1999). Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. Journal of Biological Chemistry, 274(5), 3235-3242.
Visconti, P. E., Moore, G. D., Bailey, J. L., Leclerc, P., Connors, S. A., Pan, D., Olds-Clarke, P., & Kopf, G. S. (1995). Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development, 121(4), 1139-1150.
معلومات مُعتمدة: T32 GM108556 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: ROS; capacitation; catalase; phosphorylation; sperm
المشرفين على المادة: 0 (Reactive Oxygen Species)
E0399OZS9N (Cyclic AMP)
EC 1.11.1.6 (Catalase)
EC 1.15.1.1 (Superoxide Dismutase)
EC 2.7.11.11 (Cyclic AMP-Dependent Protein Kinases)
SY7Q814VUP (Calcium)
تواريخ الأحداث: Date Created: 20210728 Date Completed: 20220121 Latest Revision: 20220121
رمز التحديث: 20240628
DOI: 10.1002/mrd.23524
PMID: 34318548
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-2795
DOI:10.1002/mrd.23524