دورية أكاديمية

Time-Resolved Proteome Analysis of Listeria monocytogenes during Infection Reveals the Role of the AAA+ Chaperone ClpC for Host Cell Adaptation.

التفاصيل البيبلوغرافية
العنوان: Time-Resolved Proteome Analysis of Listeria monocytogenes during Infection Reveals the Role of the AAA+ Chaperone ClpC for Host Cell Adaptation.
المؤلفون: Birk MS; Max Planck Unit for the Science of Pathogens, Berlin, Germany., Ahmed-Begrich R; Max Planck Unit for the Science of Pathogens, Berlin, Germany., Tran S; Max Planck Unit for the Science of Pathogens, Berlin, Germany., Elsholz AKW; Max Planck Unit for the Science of Pathogens, Berlin, Germany., Frese CK; Max Planck Unit for the Science of Pathogens, Berlin, Germany., Charpentier E; Max Planck Unit for the Science of Pathogens, Berlin, Germany.
المصدر: MSystems [mSystems] 2021 Aug 31; Vol. 6 (4), pp. e0021521. Date of Electronic Publication: 2021 Aug 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 101680636 Publication Model: Print-Electronic Cited Medium: Print ISSN: 2379-5077 (Print) Linking ISSN: 23795077 NLM ISO Abbreviation: mSystems Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Society for Microbiology, [2016]-
مستخلص: The cellular proteome comprises all proteins expressed at a given time and defines an organism's phenotype under specific growth conditions. The proteome is shaped and remodeled by both protein synthesis and protein degradation. Here, we developed a new method which combines metabolic and chemical isobaric peptide labeling to simultaneously determine the time-resolved protein decay and de novo synthesis in an intracellular human pathogen. We showcase this method by investigating the Listeria monocytogenes proteome in the presence and absence of the AAA+ chaperone protein ClpC. ClpC associates with the peptidase ClpP to form an ATP-dependent protease complex and has been shown to play a role in virulence development in L. monocytogenes. However, the mechanism by which ClpC is involved in the survival and proliferation of intracellular L. monocytogenes remains elusive. Employing this new method, we observed extensive proteome remodeling in L. monocytogenes upon interaction with the host, supporting the hypothesis that ClpC-dependent protein degradation is required to initiate bacterial adaptation mechanisms. We identified more than 100 putative ClpC target proteins through their stabilization in a clpC deletion strain. Beyond the identification of direct targets, we also observed indirect effects of the clpC deletion on the protein abundance in diverse cellular and metabolic pathways, such as iron acquisition and flagellar assembly. Overall, our data highlight the crucial role of ClpC for L. monocytogenes adaptation to the host environment through proteome remodeling. IMPORTANCE Survival and proliferation of pathogenic bacteria inside the host depend on their ability to adapt to the changing environment. Profiling the underlying changes on the bacterial proteome level during the infection process is important to gain a better understanding of the pathogenesis and the host-dependent adaptation processes. The cellular protein abundance is governed by the interplay between protein synthesis and decay. The direct readout of these events during infection can be accomplished using pulsed stable-isotope labeling by amino acids in cell culture (SILAC). Combining this approach with tandem-mass-tag (TMT) labeling enabled multiplexed and time-resolved bacterial proteome quantification during infection. Here, we applied this integrated approach to investigate protein turnover during the temporal progression of adaptation of the human pathogen L. monocytogenes to its host on a system-wide scale. Our experimental approach can easily be transferred to probe the proteome remodeling in other bacteria under a variety of perturbations.
References: Nature. 2011 Jul 20;475(7356):324-32. (PMID: 21776078)
Gene. 1990 Sep 28;94(1):129-32. (PMID: 2121618)
Clin Microbiol Rev. 2001 Jul;14(3):584-640. (PMID: 11432815)
Antioxid Redox Signal. 2018 Dec 20;29(18):1858-1871. (PMID: 28938859)
Biotechnol Bioeng. 1997 Dec 5;56(5):530-7. (PMID: 18642273)
Mol Cell Proteomics. 2016 Dec;15(12):3551-3563. (PMID: 27765818)
Commun Integr Biol. 2012 Mar 1;5(2):160-2. (PMID: 22808321)
BMC Genomics. 2013 Nov 01;14:745. (PMID: 24175918)
Curr Biol. 2014 May 19;24(10):R424-34. (PMID: 24845675)
Appl Environ Microbiol. 2008 Feb;74(3):594-604. (PMID: 18065622)
BMC Bioinformatics. 2010 Feb 18;11:94. (PMID: 20167110)
Sci Signal. 2012 Mar 27;5(217):rs2. (PMID: 22457332)
PLoS Genet. 2018 Mar 12;14(3):e1007283. (PMID: 29529043)
Mol Microbiol. 2015 Feb;95(4):624-44. (PMID: 25430920)
Annu Rev Biochem. 2011;80:587-612. (PMID: 21469952)
Nucleic Acids Res. 2018 Jan 4;46(D1):D743-D748. (PMID: 29788229)
Front Nutr. 2019 Jun 14;6:89. (PMID: 31259174)
Science. 2001 Oct 26;294(5543):849-52. (PMID: 11679669)
Proteomics. 2010 Aug;10(15):2801-11. (PMID: 20518028)
Proteomics. 2011 May;11(10):2019-26. (PMID: 21500348)
PLoS One. 2009 Dec 04;4(12):e8176. (PMID: 19997597)
Mol Microbiol. 1996 Sep;21(5):977-87. (PMID: 8885268)
Appl Environ Microbiol. 2004 Nov;70(11):6887-91. (PMID: 15528558)
ACS Infect Dis. 2020 Aug 14;6(8):2279-2290. (PMID: 32579327)
Appl Environ Microbiol. 2010 Jan;76(2):406-16. (PMID: 19933349)
J Bacteriol. 2008 Aug;190(15):5412-30. (PMID: 18502850)
Sci Rep. 2017 Sep 8;7(1):9718. (PMID: 28887440)
Science. 2001 Jul 27;293(5530):705-8. (PMID: 11474114)
Science. 1999 Dec 3;286(5446):1888-93. (PMID: 10583944)
Infect Immun. 2005 Sep;73(9):5530-9. (PMID: 16113269)
J Proteomics. 2015 Oct 14;128:203-17. (PMID: 26244908)
Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60. (PMID: 19880382)
Infect Immun. 2020 Apr 20;88(5):. (PMID: 32094249)
Cell Host Microbe. 2016 Aug 10;20(2):133-43. (PMID: 27512901)
Methods. 2013 Jun 15;61(3):244-50. (PMID: 23643866)
FEMS Microbiol Lett. 1995 Nov 1;133(1-2):77-83. (PMID: 8566716)
PLoS Pathog. 2011 Aug;7(8):e1002153. (PMID: 21829361)
Mol Microbiol. 1998 Mar;27(6):1235-45. (PMID: 9570408)
Mol Cell Proteomics. 2018 May;17(5):974-992. (PMID: 29414762)
Nat Methods. 2007 Nov;4(11):923-5. (PMID: 17952086)
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. (PMID: 30395287)
Res Microbiol. 2009 Nov;160(9):704-10. (PMID: 19778606)
Vaccine. 2007 Mar 1;25(11):2011-8. (PMID: 17241711)
FEMS Microbiol Lett. 1998 Jan 1;158(1):45-50. (PMID: 9453154)
Mol Microbiol. 1988 Sep;2(5):637-46. (PMID: 3185282)
BMC Bioinformatics. 2012;13 Suppl 16:S12. (PMID: 23176165)
Appl Environ Microbiol. 2005 Dec;71(12):8002-7. (PMID: 16332779)
J Proteome Res. 2014 Dec 5;13(12):6046-57. (PMID: 25383790)
Genes Dev. 2006 Dec 1;20(23):3283-95. (PMID: 17158746)
Environ Microbiol. 2012 Oct;14(10):2838-50. (PMID: 22812682)
Mol Microbiol. 2000 Mar;35(6):1286-94. (PMID: 10760131)
Mol Microbiol. 2017 Apr;104(2):212-233. (PMID: 28097715)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
EMBO Rep. 2011 May;12(5):458-62. (PMID: 21460796)
PLoS Pathog. 2006 Apr;2(4):e30. (PMID: 16617375)
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. (PMID: 30395289)
Elife. 2020 May 29;9:. (PMID: 32469310)
Proteomics. 2009 Dec;9(24):5484-96. (PMID: 19834917)
Infect Immun. 2004 Aug;72(8):4911-7. (PMID: 15271960)
Mol Cell Proteomics. 2012 Sep;11(9):558-70. (PMID: 22556279)
Adv Exp Med Biol. 1993;341:21-37. (PMID: 8116484)
Mol Microbiol. 2004 Feb;51(4):1087-102. (PMID: 14763982)
Appl Environ Microbiol. 2007 Feb;73(3):997-1001. (PMID: 17114323)
Front Cell Infect Microbiol. 2014 Nov 03;4:156. (PMID: 25405102)
Mol Cell Proteomics. 2017 May;16(5):873-890. (PMID: 28325852)
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21. (PMID: 11309499)
Infect Immun. 2016 Dec 29;85(1):. (PMID: 27795353)
J Bacteriol. 2008 Jan;190(1):321-31. (PMID: 17981983)
Microbiology (Reading). 2007 Apr;153(Pt 4):1103-1111. (PMID: 17379719)
Nat Methods. 2016 Sep;13(9):731-40. (PMID: 27348712)
Nat Protoc. 2019 Jan;14(1):68-85. (PMID: 30464214)
Nature. 2020 Jul;583(7816):469-472. (PMID: 32408336)
Nat Methods. 2009 May;6(5):343-5. (PMID: 19363495)
فهرسة مساهمة: Keywords: AAA+; ClpC; Listeria monocytogenes; adaptation; host-pathogen interactions; infection; mass spectrometry; proteolysis; proteomics; pulsed SILAC; tandem-mass-tag
تواريخ الأحداث: Date Created: 20210803 Latest Revision: 20240403
رمز التحديث: 20240403
مُعرف محوري في PubMed: PMC8407217
DOI: 10.1128/mSystems.00215-21
PMID: 34342529
قاعدة البيانات: MEDLINE
الوصف
تدمد:2379-5077
DOI:10.1128/mSystems.00215-21