دورية أكاديمية

3D T1-weighted turbo spin echo contrast-enhanced MRI at 1.5 T for frameless brain metastases radiotherapy.

التفاصيل البيبلوغرافية
العنوان: 3D T1-weighted turbo spin echo contrast-enhanced MRI at 1.5 T for frameless brain metastases radiotherapy.
المؤلفون: Yuan J; Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, 8/F, Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong SAR, China. jyuanbwh@gmail.com., Law SCK; Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong SAR, China., Wong KK; Department of Diagnostic and Interventional Radiology, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong SAR, China., Lo GG; Department of Diagnostic and Interventional Radiology, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong SAR, China., Kam MKM; Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong SAR, China., Kwan WH; Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong SAR, China., Xue C; Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, 8/F, Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong SAR, China., Wong OL; Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, 8/F, Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong SAR, China., Yu SK; Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, 8/F, Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong SAR, China., Cheung KY; Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, 8/F, Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong SAR, China.
المصدر: Journal of cancer research and clinical oncology [J Cancer Res Clin Oncol] 2022 Jul; Vol. 148 (7), pp. 1749-1759. Date of Electronic Publication: 2021 Aug 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 7902060 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1335 (Electronic) Linking ISSN: 01715216 NLM ISO Abbreviation: J Cancer Res Clin Oncol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer-Verlag.
مواضيع طبية MeSH: Brain Neoplasms*/diagnostic imaging , Brain Neoplasms*/radiotherapy , Radiation Oncology*, Brain ; Contrast Media ; Humans ; Magnetic Resonance Imaging/methods
مستخلص: Purpose: Performance of 3D-T1W-TSE has been proven superior to 3D-MP-GRE at 3 T on brain metastases (BM) contrast-enhanced (CE) MRI. However, its performance at 1.5 T is largely unknown and sparsely reported. This study aims to assess image quality, lesion detectability and conspicuity of 1.5 T 3D-T1W-TSE on planning MRI of frameless BM radiotherapy.
Methods: 94 BM patients to be treated by frameless brain radiotherapy were scanned using 3D-T1W-TSE with immobilization on multi-vendor 1.5 T MRI-simulators. BMs were jointly diagnosed by 4 reviewers. Enhanced lesion conspicuity was quantitatively assessed by calculating contrast ratio (CR) and contrast-to-noise ratio (CNR). Signal-to-noise ratio (SNR) reduction of white matter due to the use of flexible coil was assessed. Lesion detectability and conspicuity were compared between 1.5 T planning MRI and 3 T diagnostic MRI by an oncologist and a radiologist in 10 patients.
Results: 497 BMs were jointly diagnosed. The CR and CNR were 75.2 ± 39.9% and 14.2 ± 8.1, respectively. SNR reduced considerably from 31.7 ± 8.3 to 21.9 ± 5.4 with the longer distance to coils. 3 T diagnostic MRI and 1.5 T planning MRI yielded exactly the same detection of 84 BMs. Qualitatively, lesion conspicuity at 1.5 T was not inferior to that at 3 T. Quantitatively, lower brain SNR and lesion CNR were found at 1.5 T, while lesion CR at 1.5 T was highly comparable to that at 3 T.
Conclusion: 1.5 T 3D-T1W-TSE planning MRI of frameless BM radiotherapy was comprehensively assessed. Highly comparable BM detectability and conspicuity were achieved by 1.5 T planning MRI compared to 3 T diagnostic MRI. 1.5 T 3D-T1W-TSE should be valuable for frameless brain radiotherapy planning.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Bednarz G, Downes MB, Corn BW, Curran WJ, Goldman HW (1999) Evaluation of the spatial accuracy of magnetic resonance imaging-based stereotactic target localization for gamma knife radiosurgery of functional disorders. Neurosurgery 45:1156–1161. https://doi.org/10.1097/00006123-199911000-00028. (PMID: 10.1097/00006123-199911000-0002810549932)
Busse RF, Brau AC, Vu A et al (2008) Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 60:640–649. https://doi.org/10.1002/mrm.21680. (PMID: 10.1002/mrm.21680187270822760745)
Chandarana H, Wang H, Tijssen RHN, Das IJ (2018) Emerging role of MRI in radiation therapy. J Magn Reson Imaging 48(6):1468–1478. https://doi.org/10.1002/jmri.26271. (PMID: 10.1002/jmri.26271301947946986460)
Danieli L, Riccitelli GC, Distefano D et al (2019) Brain tumor-enhancement visualization and morphometric assessment: a comparison of MPRAGE, SPACE, and VIBE MRI techniques. AJNR Am J Neuroradiol 40:1140–1148. https://doi.org/10.3174/ajnr.A6096. (PMID: 10.3174/ajnr.A6096312216357048542)
Davis FG, Dolecek TA, McCarthy BJ, Villano JL (2012) Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro Oncol 14:1171–1177. https://doi.org/10.1093/neuonc/nos152. (PMID: 10.1093/neuonc/nos152228983723424213)
Devic S (2012) MRI simulation for radiotherapy treatment planning. Med Phys 39:6701–6711. https://doi.org/10.1118/1.4758068. (PMID: 10.1118/1.475806823127064)
Eichler AF, Plotkin SR (2008) Brain metastases. Curr Treat Options Neurol 10:308–314. https://doi.org/10.1007/s11940-008-0033-x. (PMID: 10.1007/s11940-008-0033-x18579017)
Furutani K, Harada M, Mawlan M, Nishitani H (2008) Difference in enhancement between spin echo and 3-dimensional fast spoiled gradient recalled acquisition in steady state magnetic resonance imaging of brain metastasis at 3-T magnetic resonance imaging. J Comput Assist Tomogr 32:313–319. https://doi.org/10.1097/RCT.0b013e318074fd9d. (PMID: 10.1097/RCT.0b013e318074fd9d18379324)
Kakeda S, Korogi Y, Hiai Y et al (2007) Detection of brain metastasis at 3T: comparison among SE, IR-FSE and 3D-GRE sequences. Eur Radiol 17:2345–2351. https://doi.org/10.1007/s00330-007-0599-9. (PMID: 10.1007/s00330-007-0599-917318603)
Kato Y, Higano S, Tamura H et al (2009) Usefulness of contrast-enhanced T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions in detection of small brain metastasis at 3T MR imaging: comparison with magnetization-prepared rapid acquisition of gradient echo imaging. AJNR Am J Neuroradiol 30:923–929. https://doi.org/10.3174/ajnr.A1506. (PMID: 10.3174/ajnr.A1506192138257051676)
Kaufmann TJ, Smits M, Boxerman J et al (2020) Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases (BTIP-BM). Neuro Oncol 22(6):757–772. https://doi.org/10.1093/neuonc/noaa030. (PMID: 10.1093/neuonc/noaa030320487197283031)
Kupelian P, Sonke JJ (2014) Magnetic resonance-guided adaptive radiotherapy: a solution to the future. Semin Radiat Oncol 24:227–232. https://doi.org/10.1016/j.semradonc.2014.02.013. (PMID: 10.1016/j.semradonc.2014.02.01324931098)
Kwak H-S, Hwang S, Chung G-H, Song J-S, Choi E-J (2015) Detection of small brain metastases at 3 T: comparing the diagnostic performances of contrast-enhanced T1-weighted SPACE, MPRAGE, and 2D FLASH imaging. Clin Imaging 39:571–575. https://doi.org/10.3174/ajnr.A6096. (PMID: 10.3174/ajnr.A609625770904)
Lagendijk JJW, Raaymakers BW, Raaijmakers AJE et al (2008) MRI/linac integration. Radiother Oncol 86:25–29. https://doi.org/10.1016/j.radonc.2007.10.034. (PMID: 10.1016/j.radonc.2007.10.03418023488)
Lagendijk JJ, Raaymakers BW, van Vulpen M (2014) The magnetic resonance imaging-linac system. Semin Radiat Oncol 24:207–209. https://doi.org/10.1016/j.semradonc.2014.02.009. (PMID: 10.1016/j.semradonc.2014.02.00924931095)
Mandija S, D’Agata F, Navest RJM et al (2019) Brain and head-and-neck MRI in immobilization mask: a practical solution for MR-only radiotherapy. Front Oncol 9:647. https://doi.org/10.3389/fonc.2019.00647. (PMID: 10.3389/fonc.2019.00647313802836650525)
McClelland S, Watson GA (2019) Impact of MRI timing on accuracy of stereotactic radiosurgical planning: visualizing the forest from the trees. Int J Rad Oncol Biol Phys 103:1012–3. https://doi.org/10.1016/j.ijrobp.2018.11.030. (PMID: 10.1016/j.ijrobp.2018.11.030)
Mugler JP 3rd (2014) Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 39:745–767. https://doi.org/10.1002/jmri.24542. (PMID: 10.1002/jmri.2454224399498)
Nagao E, Yoshiura T, Hiwatashi A et al (2011) 3D turbo spin-echo sequence with motion-sensitized driven-equilibrium preparation for detection of brain metastases on 3T MR imaging. AJNR Am J Neuroradiol 32:664–670. https://doi.org/10.3174/ajnr.A2343. (PMID: 10.3174/ajnr.A2343212927977965899)
Oelfke U (2015) Magnetic resonance imaging-guided radiation therapy: technological innovation provides a new vision of radiation oncology practice. Clin Oncol (r Coll Radiol) 27:495–497. https://doi.org/10.1016/j.clon.2015.04.004. (PMID: 10.1016/j.clon.2015.04.004)
Paulson ES, Crijns SP, Keller BM et al (2016) Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol 121:187–192. https://doi.org/10.1016/j.radonc.2016.09.018. (PMID: 10.1016/j.radonc.2016.09.01827838146)
Pope WB (2018) Brain metastases: neuroimaging. Handb Clin Neurol 149:89–112. https://doi.org/10.1016/B978-0-12-811161-1.00007-4. (PMID: 10.1016/B978-0-12-811161-1.00007-4293073646118134)
Putz F, Mengling V, Perrin R et al (2020) Magnetic resonance imaging for brain stereotactic radiotherapy : a review of requirements and pitfalls. Strahlenther Onkol 196:444–456. https://doi.org/10.1007/s00066-020-01604-0. (PMID: 10.1007/s00066-020-01604-0322068427182639)
Raaymakers BW, Lagendijk JJW, Overweg J et al (2009) Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 54:N229–N237. https://doi.org/10.1088/0031-9155/54/12/N01. (PMID: 10.1088/0031-9155/54/12/N0119451689)
Reichert M, Morelli JN, Runge VM et al (2013) Contrast-enhanced 3-dimensional SPACE versus MP-RAGE for the detection of brain metastases: considerations with a 32-channel head coil. Invest Radiol 48:55–60. https://doi.org/10.1097/RLI.0b013e318277b1aa. (PMID: 10.1097/RLI.0b013e318277b1aa23192164)
Seibert TM, White NS, Kim GY et al (2016) Distortion inherent to magnetic resonance imaging can lead to geometric miss in radiosurgery planning. Pract Radiat Oncol 6:e319–e328. https://doi.org/10.1016/j.prro.2016.05.008. (PMID: 10.1016/j.prro.2016.05.008275234405099096)
Suh CH, Jung SC, Kim KW, Pyo J (2016) The detectability of brain metastases using contrast-enhanced spin-echo or gradient-echo images: a systematic review and meta-analysis. J Neurooncol 129:363–371. https://doi.org/10.1007/s11060-016-2185-y. (PMID: 10.1007/s11060-016-2185-y27324495)
Tabouret E, Chinot O, Metellus P, Tallet A, Viens P, Goncalves A (2012) Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32:4655–4662. (PMID: 23155227)
Takeda T, Takeda A, Nagaoka T et al (2008) Gadolinium-enhanced three-dimensional magnetization-prepared rapid gradient-echo (3D MP-RAGE) imaging is superior to spin-echo imaging in delineating brain metastases. Acta Radiol 49:1167–1173. https://doi.org/10.1080/02841850802477924. (PMID: 10.1080/0284185080247792418979271)
Walker A, Liney G, Metcalfe P, Holloway L (2014) MRI distortion: considerations for MRI based radiotherapy treatment planning. Australas Phys Eng Sci Med 37:103–113. https://doi.org/10.1007/s13246-014-0252-2. (PMID: 10.1007/s13246-014-0252-224519001)
Weygand J, Fuller CD, Ibbott GS et al (2016) Spatial precision in magnetic resonance imaging-guided radiation therapy: the role of geometric distortion. Int J Radiat Oncol Biol Phys 95:1304–1316. https://doi.org/10.1016/j.ijrobp.2016.02.059. (PMID: 10.1016/j.ijrobp.2016.02.05927354136)
Wong OL, Yuan J, Yu SK, Cheung KY (2017) Image quality assessment of a 1.5T dedicated magnetic resonance-simulator for radiotherapy with a flexible radio frequency coil setting using the standard American College of Radiology magnetic resonance imaging phantom test. Quant Imaging Med Surg 7:205–14. https://doi.org/10.21037/qims.2017.02.08. (PMID: 10.21037/qims.2017.02.08285160465418154)
معلومات مُعتمدة: REC-2018-06 Hong Kong Sanatorium and Hospital
فهرسة مساهمة: Keywords: 3D T1-weighted turbo spin echo; Brain metastases; Contrast enhanced MRI; MR-guided-radiotherapy; Stereotactic radiotherapy
المشرفين على المادة: 0 (Contrast Media)
تواريخ الأحداث: Date Created: 20210807 Date Completed: 20220614 Latest Revision: 20220614
رمز التحديث: 20231215
DOI: 10.1007/s00432-021-03755-8
PMID: 34363123
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1335
DOI:10.1007/s00432-021-03755-8