دورية أكاديمية

Use of encapsulated lactic acid bacteria as bioprotective cultures in fresh Brazilian cheese.

التفاصيل البيبلوغرافية
العنوان: Use of encapsulated lactic acid bacteria as bioprotective cultures in fresh Brazilian cheese.
المؤلفون: Ribeiro LLSM; Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil., Araújo GP; Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil., de Oliveira Ribeiro K; Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil., Torres IMS; Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil., De Martinis ECP; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil., Marreto RN; Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil., Alves VF; Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil. virginia_alves@ufg.br.
المصدر: Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Braz J Microbiol] 2021 Dec; Vol. 52 (4), pp. 2247-2256. Date of Electronic Publication: 2021 Aug 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Brazil NLM ID: 101095924 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1678-4405 (Electronic) Linking ISSN: 15178382 NLM ISO Abbreviation: Braz J Microbiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2019- : Switzerland, AG : Springer International Publishing
Original Publication: Rio de Janeiro, RJ, Brasil : Sociedade Brasileira de Microbiologia
مواضيع طبية MeSH: Cheese*/microbiology , Food Microbiology*/methods , Lactobacillales*/physiology , Lactococcus lactis*/physiology, Lactobacillus/physiology ; Refrigeration ; Staphylococcus aureus
مستخلص: There is great interest for biopreservation of food products, and encapsulation may be a good strategy to extend the viability of protective cultures. In this study, Lactobacillus paraplantarum FT-259 and Lactococcus lactis QMF 11 were separately encapsulated in casein/pectin (C/P) microparticles, which were tested for antilisterial and anti-staphylococcal activity in fresh Minas cheese (FMC) stored at 8 °C. The encapsulation efficiency for both lactic acid bacteria (LAB) was 82.5%, with viability over 6.2 log CFU/g after storage of C/P microparticles for 90 days under refrigeration. Interestingly, free Lb. paraplantarum and free Lc. lactis grew significantly in refrigerated FMC, both in the presence and absence of pathogens, but only the first significatively grew when encapsulated. Encapsulation increased the antilisterial activity of Lb. paraplantarum in FMC. Moreover, Lc. lactis significantly inhibited listerial growth in FMC in both its free and encapsulated forms, whereas Staphylococcus aureus counts were only significantly reduced in the presence of free Lc. lactis. In conclusion, these results indicate that C/P microparticles are effective carriers of LAB in FMC, which can contribute for the assurance of the safety of this product.
(© 2021. Sociedade Brasileira de Microbiologia.)
References: Linares-Morales JR, Gutiérrez-Méndez N, Rivera-Chavira BE, Pérez-Vega SB, Nevárez-Moorillón GV (2018) Biocontrol processes in fruits and fresh produce, the use of lactic acid bacteria as a sustainable option. Front Sustain Food Syst 2. https://doi.org/10.3389/fsufs.2018.00050.
Said BS, Gaudreau H, Dallaire L, Tessier M, Fliss I (2019) Bioprotective culture: a new generation of food additives for the preservation of food quality and safety. Ind Bioteh, 15 (3). https://doi.org/10.1089/ind.2019.29175.lbs.
Singh VP (2018) Recent approaches in food bio-preservation - a review. Open Vet J 8(1):104. https://doi.org/10.4314/ovj.v8i1.16. (PMID: 10.4314/ovj.v8i1.16297214395918123)
Åvall-Jääskeläinen S, Palva A (2005) Lactobacillus surface layers and their applications. FEMS Microbiol Rev 29(3):511–529. https://doi.org/10.1016/j.fmrre.2005.04.003. (PMID: 10.1016/j.fmrre.2005.04.00315935509)
Nuryshev MZ, Stoyanova LG, Netrusov AI (2016) New probiotic culture of Lactococcus lactis ssp. lactis: effective opportunities and prospects. J Microb Biochem Technol 8:290–295. https://doi.org/10.4172/1948-5948.1000299. (PMID: 10.4172/1948-5948.1000299)
Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo GM (2017) Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms 5(3):38. https://doi.org/10.3390/microorganisms5030038. (PMID: 10.3390/microorganisms50300385620629)
Tulini FL, Winkelströter LK, De Martinis ECP (2013) Identification and evaluation of the probiotic potential of Lactobacillus paraplantarum FT259, a bacteriocinogenic strain isolated from Brazilian semi-hard artisanal cheese. Anaerobe 22:57–63. https://doi.org/10.1016/j.anaerobe.2013.06.006. (PMID: 10.1016/j.anaerobe.2013.06.00623792229)
Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Techn 18(5):240–251. https://doi.org/10.1016/j.tifs.2007.01.004. (PMID: 10.1016/j.tifs.2007.01.004)
Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg 27:15–25. https://doi.org/10.1016/j.ifset.2014.09.010. (PMID: 10.1016/j.ifset.2014.09.010)
Silva TM, Barin JS, Lopes EJ, Cichoski AJ, Flores EMM, Silva CB et al (2019) Development, characterization and viability study of probiotic microcapsules produced by complex coacervation followed by freeze-drying. Ciênc Rural 49(7). https://doi.org/10.1590/0103-8478cr20180775.
Silva CCG, Silva SPM, Ribeiro SC (2018) Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00594.
Bosnea LA, Moschakis T, Biliaderis CG (2014) Complex coacervation as a novel microencapsulation technique to improve viability of probiotics under different stresses. Food Bioproc Tech 7(10):2767–2781. https://doi.org/10.1007/s11947-014-1317-7. (PMID: 10.1007/s11947-014-1317-7)
Afzaal M, Khan AU, Saeed F, Ahmed A, Ahmad MH, Maan AA et al (2019) Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci Nutr 7(12):3931–3940. https://doi.org/10.1002/fsn3.1254. (PMID: 10.1002/fsn3.1254318901716924303)
Léonard L, Beji O, Arnould C, Noirot E, Bonnote A, Gharsallaoui A et al (2015) Preservation of viability and anti-Listeria activity of lactic acid bacteria, Lactococcus lactis and Lactobacillus paracasei, entrapped in gelling matrices of alginate or alginate/caseinate. Food Control 47:7–19. https://doi.org/10.1016/j.foodcont.2014.06.020. (PMID: 10.1016/j.foodcont.2014.06.020)
Oliveira AC, Moretti TS, Boschini C, Baliero JCC, Freitas O, Favaro-Trindade CS (2007) Stability of microencapsulated B. Lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J Microencap 24(7):685–693. https://doi.org/10.1080/02652040701532908. (PMID: 10.1080/02652040701532908)
Souza CHB, Saad SMI (2009) Viability of Lactobacillus acidophilus La-5 added solely or in co-culture with a yoghurt starter culture and implications on physico-chemical and related properties of Minas fresh cheese during storage. LWT - Food Sci Tech 42(2):633–640. https://doi.org/10.1016/j.lwt.2008.07.015. (PMID: 10.1016/j.lwt.2008.07.015)
Campagnollo FB, Gonzales-Barron U, Cadavez VAP, Sant’Ana AS, Schaffner DW (2018) Quantitative risk assessment of Listeria monocytogenes in traditional Minas cheeses: the cases of artisanal semi-hard and fresh soft cheeses. Food Control 92:370–379. https://doi.org/10.1016/j.foodcont.2018.05.019. (PMID: 10.1016/j.foodcont.2018.05.019)
Barancelli GV, Oliveira CAF, Corassim CH, Camargo TM, Santos MG et al (2014) Occurrence of Escherichia coli and coliforms in Minas cheese plants from São Paulo, Brazil. J Adv Dairy Res 2:2. https://doi.org/10.4172/2329-888X.1000120. (PMID: 10.4172/2329-888X.1000120)
Castro RCS, Oliveira APD, Souza EAR, Correia TMA, Souza JV et al (2018) Lactic Acid Bacteria as biological control of Staphylococcus aureus in goat “coalho” Cheese. Food Tech Biotech 56(3) https://doi.org/10.17113/ftb.56.03.18.5736.
Aragon-Alegro LC, Lima EMF, Palcich G, Nunes TP, Souza KLO, Martins CG et al (2021) Listeria monocytogenes inhibition by lactic acid bacteria and coliforms in Brazilian fresh white cheese. Braz J Microbiol 52(2):847–858. https://doi.org/10.1007/s42770-021-00431-4. (PMID: 10.1007/s42770-021-00431-433462722)
Perin L, Miranda R, Camargo A, Colombo M, Carvalho A, Nero L (2013) Antimicrobial activity of the Nisin Z producer Lactococcus lactis subsp. lactis Lc08 against Listeria monocytogenes in skim milk. Arq Bras Med Vet Zootec 5:1554–1560. https://doi.org/10.1590/S0102-09352013000500037. (PMID: 10.1590/S0102-09352013000500037)
Costa ACCC, Pereira AN, Silva AC de A e, Silva FA, Ribeiro K de O, Torres IMS, et al (2018) Antilisterial and antistaphylococcal activity of a Lactococcus lactis strain isolated from Brazilian fresh Minas cheese. J Food Safety 39(1). https://doi.org/10.1111/jfs.12593.
Marreto RN, Ramos MFS, Silva EJ, Freitas O, Freitas LAP (2013) Impact of cross-linking and drying method on drug delivery performance of casein–pectin microparticles. AAPS PharmSciTech 14(3):1227–1235. https://doi.org/10.1208/s12249-013-0012-8. (PMID: 10.1208/s12249-013-0012-8239344323755150)
Annan NT, Borza AD, Hansen LT (2008) Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res Int 41(2):184–193. https://doi.org/10.1016/j.foodres.2007.11.001. (PMID: 10.1016/j.foodres.2007.11.001)
Sangaletti N, Porto E, Brazaca SGC, Yagasaki CA, Dea RCD, Silva VA (2009) Estudo da vida útil de queijo Minas (Study of Minas cheese shelf life). Food Sci Technol 29(2):262–269. https://doi.org/10.1590/S0101-20612009000200004. (PMID: 10.1590/S0101-20612009000200004)
R Development Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Menezes MFSC, Silva TM, Etchepare MA, Fonseca BS, Sonza VP, Codevilla CF, et al (2019) Improvement of the viability of probiotics (Lactobacillus acidophilus) by multilayer encapsulation. Cienc Rural 49(9). https://doi.org/10.1590/0103-8478cr20181020.
Mahmoud M, Abdallah NA, El-Shafei K, Tawfik NF, El-Sayed HS (2020) Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon 6(3):e03541. https://doi.org/10.1016/j.heliyon.2020.e03541. (PMID: 10.1016/j.heliyon.2020.e03541321907597068628)
Kavitake D, Kandasamy S, Devi BP, Shetty H (2017) Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods -a review. Food Biosc 21:34–44. https://doi.org/10.1016/j.fbio.2017.11.003. (PMID: 10.1016/j.fbio.2017.11.003)
Malheiros PPS, Daroit D, Brandelli A (2012) Inhibition of Listeria monocytogenes in Minas frescal cheese by free and nanovesicle- encapsulated nisin. Braz J Microbiol 43(4):1414–1418. https://doi.org/10.1590/S1517-83822012000400024. (PMID: 10.1590/S1517-838220120004000243769029)
Barbosa MS, Todorov SD, Jurkiewicz CH, Franco BDGM (2015) Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control 47:147–153. https://doi.org/10.1016/j.foodcont.2014.07.005. (PMID: 10.1016/j.foodcont.2014.07.005)
Ivanova E, Chipeva V, Ivanova I, Dousset X, Poncelet D (2000) Encapsulation of lactic acid bacteria in calcium alginate beads for bacteriocin production. J Cult Collect 3:53–58.
Wusigale LL, Yangchao L (2020) Casein and pectin: Structures, interactions, and applications. Trends Food Sci Technol 97:391–403. https://doi.org/10.1016/j.tifs.2020.01.027. (PMID: 10.1016/j.tifs.2020.01.027)
Oliveira AC, Moretti TS, Boschini C, Baliero JCC, Freitas LAP, FavaroTrindade CS (2007) Microencapsulation of B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by pouted-bed drying. Dry Technol 25(10):1687–1693. https://doi.org/10.1080/07373930701590939. (PMID: 10.1080/07373930701590939)
Muhardina V, Sari PM, Aisyah Y, Haryani S, Mega FA (2018) Extrusion encapsulation of Lactobacillus bulgaricus coated by carrageenan–alginate with additional tofu waste flour prebiotic. IJET 7(4):5242–5244. https://doi.org/10.14419/ijet.v7i4.24255. (PMID: 10.14419/ijet.v7i4.24255)
Ayama H (2014) Effect of encapsulation of selected probiotic cell on survival in simulated gastrointestinal tract condition. Songklanakarin J Sci Technol 36(3):291–299.
Fareez I, Lim S, Mishra R, Ramasamy K, Alam S, Ehsan D (2015) Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. Int J Biol Macromol 72:1419–1428. https://doi.org/10.1016/j.ijbiomac.2014.10.054. (PMID: 10.1016/j.ijbiomac.2014.10.05425450046)
Chen H-Y, Li X-Y, Liu B-J, Meng X-H (2017) Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. J Funct Foods 29:248–255. https://doi.org/10.1016/j.jff.2016.12.015. (PMID: 10.1016/j.jff.2016.12.015)
Shoji AS, Oliveira AC, Balieiro JCC, Freitas O, Thomazini M, Heinemann RJB et al (2013) Viability of L. acidophilus microcapsules and their application to buffalo milk yoghurt. Food Bioprod Process 91:83–88. https://doi.org/10.1016/j.fbp.2012.08.009. (PMID: 10.1016/j.fbp.2012.08.009)
Lopes S, Bueno L, AguiarJúnior FD, Finkler C (2017) Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus. An Acad Bras Cienc 89(3):1601–1613. https://doi.org/10.1590/0001-3765201720170071. (PMID: 10.1590/0001-376520172017007128876396)
Ahmed T, Kanwal R, Ayub N (2006) Influence of temperature on growth pattern of Lactococcus lactis, Streptococcus cremoris and Lactobacillus acidophilus isolated from camel milk. Biotechnol 5(4):481–488. https://doi.org/10.3923/biotech.2006.481.488. (PMID: 10.3923/biotech.2006.481.488)
Matejčeková Z, Liptáková D, Spodniaková S, Valík L (2016) Characterization of the growth of Lactobacillus plantarum in milk in dependence on temperature. Acta Chim Slovaca 9(2):104–108. https://doi.org/10.1515/acs-2016-0018. (PMID: 10.1515/acs-2016-0018)
Samedi L, Charles AL (2019) Functional activity of four autochthonous strains L. paraplantarum AB362736.1, L. plantarum MF369875.1, W. paramesenteroides CP023501.1, and E. faecalis HQ802261.1 in a probiotic grape marmalade during storage. Antioxidants 8:165. https://doi.org/10.3390/antiox8060165. (PMID: 10.3390/antiox80601656616862)
Grosso CRF, Fávaro-Trindade CS (2004) Stability of free and immobilized Lactobacillus acidophilus and Bifidobacterium lactis in acidified milk and of immobilized B. lactis in yoghurt. Braz J Microbiol 35:151–156. https://doi.org/10.1590/S1517-83822004000100025. (PMID: 10.1590/S1517-83822004000100025)
Lima JR, Locatelli GO, Finkler L, Luna-Finkle CL (2014) Incorporação de Lactobacillus caseimicroencapsulado em queijo tipo coalho. Rev Ciênc Saúde 7. https://doi.org/10.15448/1983-652X.2014.1.15639.
Buriti FCA, da Rocha JS, Assis EG, Saad SMI (2005) Probiotic potential of Minas fresh cheese prepared with the addition of Lactobacillus paracasei. LWT - Food Sci Tech 38(2):173–180. https://doi.org/10.1016/j.lwt.2004.05.012. (PMID: 10.1016/j.lwt.2004.05.012)
Gomes AA, Braga SP, Cruz AG, Cadena RS, Lollo PCB, Carvalho C et al (2011) Effect of the inoculation level of Lactobacillus acidophilus in probiotic cheese on the physicochemical features and sensory performance compared with commercial cheeses. J Dairy Sci 94(10):4777–4786. https://doi.org/10.3168/jds.2011-4175. (PMID: 10.3168/jds.2011-417521943729)
Ortakci F, Broadbent JR, McManus WR, McMahon DJ (2012) Survival of microencapsulated probiotic Lactobacillus paracasei LBC-1e during manufacture of Mozzarella cheese and simulated gastric digestion. J Dairy Sci 95(11):6274–6281. https://doi.org/10.3168/jds.2012-5476. (PMID: 10.3168/jds.2012-547622981567)
Afzaal M, Khan AU, Saeed F, Arshad MS, Khan MA, Saeed M et al (2020) Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Sci Nutri 8(3):1649–1656. https://doi.org/10.1002/fsn3.1451. (PMID: 10.1002/fsn3.1451)
Madi N, Boushaba R (2017) Identification of potential biopreservative lactic acid bacteria strains isolated from Algerian cow’s milk and demonstration of antagonism against S. aureus in cheese. Food Sci Tech Res 23(5):679–688. https://doi.org/10.3136/fstr.23.679. (PMID: 10.3136/fstr.23.679)
Trabelsi I, Ayadi D, Bejar W, Bejar S, Chouayekh H, Ben Salah R (2014) Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity. Int J Biol Macromo 64:84–89. https://doi.org/10.1016/j.ijbiomac.2013.11.031. (PMID: 10.1016/j.ijbiomac.2013.11.031)
Gialamas H, Zinoviadou KG, Biliaderis CG, Koutsoumanis PK (2010) Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Res Inter 43:2402–2408. https://doi.org/10.1016/j.foodres.2010.09.020. (PMID: 10.1016/j.foodres.2010.09.020)
Concha-Meyer A, Schöbitz R, Brito C, Fuentes R (2011) Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control 22:485–489. https://doi.org/10.1016/j.foodcont.2010.09.032. (PMID: 10.1016/j.foodcont.2010.09.032)
Akkaya L, Gök V, Kara R, Yaman H (2013) Enterotoxin production by Staphylococcus aureus (A, B, C, D) during the ripening of sucuk (Turkish dry-fermented sausage). CyTA- J Food 12(2):127–133. https://doi.org/10.1080/19476337.2013.804124. (PMID: 10.1080/19476337.2013.804124)
Kadariya J, Smith TC, Thapaliya D (2014). Staphylococcus aureus and Staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int 1–9. https://doi.org/10.1155/2014/827965.
Arques JL, Rodriguez E, Gaya P, Medina M, Guamis B, Nunez M (2005) Inactivation of Staphylococcus aureus in raw milk cheese by combinations of high-pressure treatments and bacteriocin-producing lactic acid bacteria. J Appl Microbiol 98(2):254–260. https://doi.org/10.1111/j.1365-2672.2004.02507.x. (PMID: 10.1111/j.1365-2672.2004.02507.x15659179)
Alomar J, Loubiere P, Delbes C, Nouaille S, Montel MC (2008) Effect of Lactococcus garvieae, Lactococcus lactis and Enterococcus faecalis on the behaviour of Staphylococcus aureus in microfiltered milk. Food Microbi 25(3):502–508. https://doi.org/10.1016/j.fm.2008.01.005. (PMID: 10.1016/j.fm.2008.01.005)
Siroli L, Patrignani F, Serrazanetti DI, Tabanelli G, Montanari C, Gardini F et al (2015) Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb’s lettuce. Food Microbi 47:74–84. https://doi.org/10.1016/j.fm.2014.11.008. (PMID: 10.1016/j.fm.2014.11.008)
Wemmenhove E, van Valenberg HJF, van Hooijdonk ACM, Wells-BennikMHJ ZMH (2018) Factors that inhibit growth of Listeria monocytogenes in nature-ripened Gouda cheese: a major role for undissociated lactic acid. Food Control 84:413–418. https://doi.org/10.1016/j.foodcont.2017.08.028. (PMID: 10.1016/j.foodcont.2017.08.028)
Gao Z, Daliri EB, Wang J, Liu D, Chen S, Ye X, Ding T (2019) Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J Food Prot 82(3):441–453. https://doi.org/10.4315/0362-028X.JFP-18-303. (PMID: 10.4315/0362-028X.JFP-18-30330794461)
Hayes M, Ross RP, Fitzgerald GF, Hill C, Stanton C (2006) Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Appl Environ Microbiol 72:2260–2264. https://doi.org/10.1128/AEM.72.3.2260. (PMID: 10.1128/AEM.72.3.2260165176841393211)
Pessione E, Cirrincione S (2016) Bioactive molecules released in food by lactic acid bacteria: encrypted peptides and biogenic amines. Front Microbiol 7:876. https://doi.org/10.3389/fmicb.2016.00876. (PMID: 10.3389/fmicb.2016.00876273755964899451)
معلومات مُعتمدة: 408544/2016-3 Conselho Nacional de Desenvolvimento Científico e Tecnológico; PQ2 Conselho Nacional de Desenvolvimento Científico e Tecnológico
فهرسة مساهمة: Keywords: Biopreservation; Cheese; Complex coacervation; Encapsulation; Lactic acid bacteria
SCR Organism: Lactobacillus paraplantarum
تواريخ الأحداث: Date Created: 20210807 Date Completed: 20211217 Latest Revision: 20220808
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8578368
DOI: 10.1007/s42770-021-00579-z
PMID: 34363592
قاعدة البيانات: MEDLINE
الوصف
تدمد:1678-4405
DOI:10.1007/s42770-021-00579-z