دورية أكاديمية

COS-derived GPP relationships with temperature and light help explain high-latitude atmospheric CO 2 seasonal cycle amplification.

التفاصيل البيبلوغرافية
العنوان: COS-derived GPP relationships with temperature and light help explain high-latitude atmospheric CO 2 seasonal cycle amplification.
المؤلفون: Hu L; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309; lei.hu@noaa.gov.; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Montzka SA; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Kaushik A; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309.; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Andrews AE; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Sweeney C; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Miller J; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Baker IT; Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523., Denning S; Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523., Campbell E; Environmental Studies Department, University of California, Santa Cruz, CA 95064., Shiga YP; Earth Science, Universities Space Research Association, Mountain View, CA 94043., Tans P; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Siso MC; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309.; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Crotwell M; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309.; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., McKain K; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309.; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Thoning K; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Hall B; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Vimont I; Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309.; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Elkins JW; Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305., Whelan ME; Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901., Suntharalingam P; School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
المصدر: Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2021 Aug 17; Vol. 118 (33).
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print Cited Medium: Internet ISSN: 1091-6490 (Electronic) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : National Academy of Sciences
مستخلص: In the Arctic and Boreal region (ABR) where warming is especially pronounced, the increase of gross primary production (GPP) has been suggested as an important driver for the increase of the atmospheric CO 2 seasonal cycle amplitude (SCA). However, the role of GPP relative to changes in ecosystem respiration (ER) remains unclear, largely due to our inability to quantify these gross fluxes on regional scales. Here, we use atmospheric carbonyl sulfide (COS) measurements to provide observation-based estimates of GPP over the North American ABR. Our annual GPP estimate is 3.6 (2.4 to 5.5) PgC · y -1 between 2009 and 2013, the uncertainty of which is smaller than the range of GPP estimated from terrestrial ecosystem models (1.5 to 9.8 PgC · y -1 ). Our COS-derived monthly GPP shows significant correlations in space and time with satellite-based GPP proxies, solar-induced chlorophyll fluorescence, and near-infrared reflectance of vegetation. Furthermore, the derived monthly GPP displays two different linear relationships with soil temperature in spring versus autumn, whereas the relationship between monthly ER and soil temperature is best described by a single quadratic relationship throughout the year. In spring to midsummer, when GPP is most strongly correlated with soil temperature, our results suggest the warming-induced increases of GPP likely exceeded the increases of ER over the past four decades. In autumn, however, increases of ER were likely greater than GPP due to light limitations on GPP, thereby enhancing autumn net carbon emissions. Both effects have likely contributed to the atmospheric CO 2 SCA amplification observed in the ABR.
Competing Interests: The authors declare no competing interest.
التعليقات: Erratum in: Proc Natl Acad Sci U S A. 2021 Nov 16;118(46):. (PMID: 34753825)
References: Science. 2016 Feb 12;351(6274):696-9. (PMID: 26797146)
Nat Plants. 2019 Sep;5(9):952-958. (PMID: 31451797)
Nature. 2014 Nov 20;515(7527):398-401. (PMID: 25409830)
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14162-7. (PMID: 26578759)
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9064-9. (PMID: 24927594)
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19368-73. (PMID: 20974944)
Nature. 2008 Jan 3;451(7174):49-52. (PMID: 18172494)
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20018-22. (PMID: 24277804)
Nature. 2014 Nov 20;515(7527):394-7. (PMID: 25409829)
Science. 2013 Sep 6;341(6150):1085-9. (PMID: 23929948)
Nat Ecol Evol. 2018 Dec;2(12):1897-1905. (PMID: 30420745)
Sci Adv. 2017 Mar 22;3(3):e1602244. (PMID: 28345046)
Sci Adv. 2018 Jul 11;4(7):eaao1167. (PMID: 30009255)
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):436-41. (PMID: 25548156)
Glob Chang Biol. 2019 Nov;25(11):3731-3740. (PMID: 31199543)
Nature. 2017 Apr 5;544(7648):84-87. (PMID: 28382993)
Commun Stat Appl Methods. 2015 Nov;22(6):665-674. (PMID: 26688802)
Science. 2008 Nov 14;322(5904):1085-8. (PMID: 19008442)
Sci Adv. 2019 Jun 05;5(6):eaaw0076. (PMID: 31183402)
Science. 2003 Jun 6;300(5625):1560-3. (PMID: 12791990)
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21079-21087. (PMID: 32817563)
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2880-5. (PMID: 26929368)
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2470-2475. (PMID: 30683727)
Science. 2017 Oct 13;358(6360):. (PMID: 29026013)
معلومات مُعتمدة: 80NSSC19M0105 United States ImNASA Intramural NASA
فهرسة مساهمة: Keywords: Arctic and Boreal ecosystems; CO2 seasonal cycle amplitude; carbonyl sulfide; climate change; gross primary production
تواريخ الأحداث: Date Created: 20210812 Date Completed: 20211206 Latest Revision: 20221005
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8379989
DOI: 10.1073/pnas.2103423118
PMID: 34380737
قاعدة البيانات: MEDLINE
الوصف
تدمد:1091-6490
DOI:10.1073/pnas.2103423118