دورية أكاديمية

Cycling cancer persister cells arise from lineages with distinct programs.

التفاصيل البيبلوغرافية
العنوان: Cycling cancer persister cells arise from lineages with distinct programs.
المؤلفون: Oren Y; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Cell Biology, Harvard Medical School, Boston, MA, USA., Tsabar M; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Department of Systems Biology, Harvard Medical School, Boston, MA, USA.; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA., Cuoco MS; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Amir-Zilberstein L; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Cabanos HF; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.; Departments of Medicine, Harvard Medical School, Boston, MA, USA., Hütter JC; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Hu B; Department of Pathology, Yale School of Medicine, New Haven, CT, USA., Thakore PI; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Genentech, South San Francisco, CA, USA., Tabaka M; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Fulco CP; Broad Institute of MIT and Harvard, Cambridge, MA, USA.; Bristol Myers Squibb, Cambridge, MA, USA., Colgan W; Broad Institute of MIT and Harvard, Cambridge, MA, USA., Cuevas BM; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA., Hurvitz SA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.; Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA., Slamon DJ; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.; Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA., Deik A; Metabolomics Platform, Broad Institute, Cambridge, MA, USA., Pierce KA; Metabolomics Platform, Broad Institute, Cambridge, MA, USA., Clish C; Metabolomics Platform, Broad Institute, Cambridge, MA, USA., Hata AN; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.; Departments of Medicine, Harvard Medical School, Boston, MA, USA., Zaganjor E; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA., Lahav G; Department of Systems Biology, Harvard Medical School, Boston, MA, USA., Politi K; Section of Medical Oncology, Department of Pathology, Yale School of Medicine, New Haven, CT, USA.; Yale Cancer Center, New Haven, CT, USA., Brugge JS; Department of Cell Biology, Harvard Medical School, Boston, MA, USA. joan_brugge@hms.harvard.edu.; Ludwig Center at Harvard, Boston, MA, USA. joan_brugge@hms.harvard.edu., Regev A; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. aviv.regev.sc@gmail.com.; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. aviv.regev.sc@gmail.com.; Howard Hughes Medical Institute, Chevy Chase, MD, USA. aviv.regev.sc@gmail.com.; Genentech, South San Francisco, CA, USA. aviv.regev.sc@gmail.com.
المصدر: Nature [Nature] 2021 Aug; Vol. 596 (7873), pp. 576-582. Date of Electronic Publication: 2021 Aug 11.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Cell Cycle*/drug effects , Cell Lineage*/drug effects, Neoplasm Recurrence, Local/*drug therapy , Neoplasm Recurrence, Local/*pathology , Neoplasms/*drug therapy , Neoplasms/*pathology, Antioxidants/metabolism ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Cell Survival/drug effects ; Clone Cells/drug effects ; Clone Cells/metabolism ; Clone Cells/pathology ; DNA Barcoding, Taxonomic ; Fatty Acids/metabolism ; Gene Expression Regulation, Neoplastic ; Humans ; Lentivirus/genetics ; Neoplasm Recurrence, Local/genetics ; Neoplasms/genetics ; Neoplasms/metabolism ; Oncogene Proteins/antagonists & inhibitors ; Oxidation-Reduction ; Oxidative Stress ; Reactive Oxygen Species/metabolism ; Transcription, Genetic/drug effects
مستخلص: Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure 1 , where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment 2 . Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell's clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.
(© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nature. 2021 Aug;596(7873):491-493. (PMID: 34381221)
Comment in: Nat Rev Cancer. 2021 Nov;21(11):683. (PMID: 34522021)
Comment in: Signal Transduct Target Ther. 2021 Dec 24;6(1):437. (PMID: 34952897)
Comment in: Nat Rev Cancer. 2022 Aug;22(8):434-435. (PMID: 35538369)
References: Salgia, R. & Kulkarni, P. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer 4, 110–118 (2018). (PMID: 10.1016/j.trecan.2018.01.001)
Vallette, F. M. et al. Dormant, quiescent, tolerant and persister cells: four synonyms for the same target in cancer. Biochem. Pharmacol. 162, 169–176 (2019). (PMID: 10.1016/j.bcp.2018.11.004)
Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010). (PMID: 10.1016/j.cell.2010.02.027)
Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016). (PMID: 10.1038/nm.4040)
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016). (PMID: 10.1126/science.aad0501)
Taniguchi, H. et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat. Commun. 10, 259 (2019). (PMID: 10.1038/s41467-018-08074-0)
Dhimolea, E. et al. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256 (2021). (PMID: 10.1016/j.ccell.2020.12.002)
Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242 (2021). (PMID: 10.1016/j.cell.2020.11.018)
Raoof, S. et al. Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene 38, 6399–6413 (2019). (PMID: 10.1038/s41388-019-0887-2)
Zhu, X., Chen, L., Liu, L. & Niu, X. EMT-Mediated Acquired EGFR-TKI Resistance in NSCLC: Mechanisms and Strategies. Front. Oncol. 9, 1044 (2019). (PMID: 10.3389/fonc.2019.01044)
Garon, E. B. et al. Antiestrogen fulvestrant enhances the antiproliferative effects of epidermal growth factor receptor inhibitors in human non-small-cell lung cancer. J. Thorac. Oncol. 8, 270–278 (2013). (PMID: 10.1097/JTO.0b013e31827d525c)
Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017). (PMID: 10.1038/nature24297)
Friedmann Angeli, J. P., Krysko, D. V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019). (PMID: 10.1038/s41568-019-0149-1)
Fox, D. B. et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat. Metab. 2, 318–334 (2020). (PMID: 10.1038/s42255-020-0191-z)
Foggetti, G. et al. Genetic determinants of EGFR-driven lung cancer growth and therapeutic response in vivo. Cancer Discov. 11, 1736–1753 (2021). (PMID: 10.1158/2159-8290.CD-20-1385)
Reczek, C. R. & Chandel, N. S. The two faces of reactive oxygen species in cancer. Ann. Rev. Cancer Biol. 1, 79–98 (2017). (PMID: 10.1146/annurev-cancerbio-041916-065808)
Zaugg, K. et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25, 1041–1051 (2011). (PMID: 10.1101/gad.1987211)
Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020). (PMID: 10.1038/s41588-020-00726-6)
McFarland, J. M. et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11, 4296 (2020). (PMID: 10.1038/s41467-020-17440-w)
Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251 (2020). (PMID: 10.1016/j.cell.2020.07.017)
Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014). (PMID: 10.1126/science.1254257)
Kwong, L. N. et al. Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma. J. Clin. Invest. 125, 1459–1470 (2015). (PMID: 10.1172/JCI78954)
Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017). (PMID: 10.1038/nature23007)
Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017). (PMID: 10.1038/nature22794)
Shah, K. N. et al. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat. Med. 25, 111–118 (2019). (PMID: 10.1038/s41591-018-0264-7)
Havas, K. M. et al. Metabolic shifts in residual breast cancer drive tumor recurrence. J. Clin. Invest. 127, 2091–2105 (2017). (PMID: 10.1172/JCI89914)
Liau, B. B. et al. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20, 233–246 (2017). (PMID: 10.1016/j.stem.2016.11.003)
Guler, G. D. et al. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure. Cancer Cell 32, 221–237 (2017). (PMID: 10.1016/j.ccell.2017.07.002)
Yang, C., Tian, C., Hoffman, T. E., Jacobsen, N. K. & Spencer, S. L. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling. Nat. Commun. 12, 1747 (2021). (PMID: 10.1038/s41467-021-21549-x)
Reyes, J. et al. Fluctuations in p53 signaling allow escape from cell-cycle arrest. Mol. Cell 71, 581–591 (2018). (PMID: 10.1016/j.molcel.2018.06.031)
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). (PMID: 10.1016/j.cell.2019.05.031)
Jerby-Arnon, L. et al. A cancer cell program promotes t cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997 (2018). (PMID: 10.1016/j.cell.2018.09.006)
Chong, J., Yamamoto, M. & Xia, J. MetaboAnalystR 2.0: from raw spectra to biological insights. Metabolites 9, E57 (2019). (PMID: 10.3390/metabo9030057)
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018). (PMID: 10.1038/nbt.4042)
Erik Garrison, G. M. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).
معلومات مُعتمدة: United States HHMI Howard Hughes Medical Institute; R01 CA148761 United States CA NCI NIH HHS; F32 AI138458 United States AI NIAID NIH HHS; P30 CA016042 United States CA NCI NIH HHS; R01 CA121210 United States CA NCI NIH HHS; R01 CA120247 United States CA NCI NIH HHS; R01 CA120247 United States CA NCI NIH HHS; P30 CA016359 United States CA NCI NIH HHS; K08 CA197389 United States CA NCI NIH HHS; P50 CA196530 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Antioxidants)
0 (Fatty Acids)
0 (Oncogene Proteins)
0 (Reactive Oxygen Species)
تواريخ الأحداث: Date Created: 20210812 Date Completed: 20220211 Latest Revision: 20230215
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC9209846
DOI: 10.1038/s41586-021-03796-6
PMID: 34381210
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-021-03796-6