دورية أكاديمية

Saccharomyces Cerevisiae as an Untapped Source of Fungal Chitosan for Antimicrobial Action.

التفاصيل البيبلوغرافية
العنوان: Saccharomyces Cerevisiae as an Untapped Source of Fungal Chitosan for Antimicrobial Action.
المؤلفون: Afroz MM; Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.; Department of Chemical Engineering, University of Wyoming, Laramie, WY, USA., Kashem MNH; Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.; Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA., Piash KMPS; Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA., Islam N; Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. nafisaislam@che.buet.ac.bd.
المصدر: Applied biochemistry and biotechnology [Appl Biochem Biotechnol] 2021 Nov; Vol. 193 (11), pp. 3765-3786. Date of Electronic Publication: 2021 Aug 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 8208561 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0291 (Electronic) Linking ISSN: 02732289 NLM ISO Abbreviation: Appl Biochem Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Clifton, N.J. : Humana Press, c1981-
مواضيع طبية MeSH: Anti-Infective Agents*/chemistry , Anti-Infective Agents*/pharmacology , Chitosan*/chemistry , Chitosan*/pharmacology, Saccharomyces cerevisiae/*chemistry , Staphylococcus aureus/*growth & development, Aspergillus niger/chemistry
مستخلص: Despite being widely available, Saccharomyces cerevisiae has not been widely explored for direct extraction of chitosan biopolymer for antimicrobial applications. In our study, S. cerevisiae from Baker's yeast and Aspergillus niger from moldy onion extracts are studied as alternative sources of chitosan; and S cerevisiae chitosan tested for antimicrobial efficacy. The properties of S. cerevisiae chitosan are compared with moldy onion chitosan and shrimp chitosan extracted from shrimp shells. Chitosan extracted from S. cerevisiae is tested for antimicrobial efficacy against Staphylococcus Aureus. The maximum yields of fungal chitosan are 20.85 ± 0.35 mg/g dry S. cerevisiae biomass at 4th day using a culture broth containing sodium acetate, and 16.15 ± 0.95 mg/g dry A. niger biomass at 12th day. The degree of deacetylation (DD%) of the extracted fungal chitosan samples from S. cerevisiae and A. niger is found to be 63.4%, and 61.2% respectively, using Fourier Transform Infrared Spectroscopy. At a concentration of 2 g/L, S. cerevisiae chitosan shows the maximum inhibition zone diameter of 15.48 ± 0.07 mm. Baker's yeast S cerevisiae biomass and A. niger from moldy onions has not been previously explored as a source of extractible fungal chitosan. This study gives insight that S. cerevisiae and A. niger from agricultural or industrial wastes could be a potential biomass source for production of the chitosan biopolymer. The S. cerevisiae chitosan displayed effective antimicrobial properties against S aureus, indicating the viablitiy of S cerevisae as a resource for extraction of high-quality chitosan.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Muzzarelli, R. A. A. (2015). Chitin: Metal ion chelation and enzyme immobilization. In Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, 11, 1493–1498. CRC Press. (PMID: 10.1081/E-EBPP-120051889)
Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011, August 1). Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science (Oxford). Elsevier Ltd. https://doi.org/10.1016/j.progpolymsci.2011.02.001.
Namboodiri, M. M. T., & Pakshirajan, K. (2019). Sustainable and green approach of chitosan production from Penicillium citrinum biomass using industrial wastewater as a cheap substrate. Journal of environmental management, 240, 431–440. (PMID: 10.1016/j.jenvman.2019.03.085)
Zhang, X., Hassanzadeh, P., Miyake, T., Jin, J., & Rolandi, M. (2016). Squid beak inspired water processable chitosan composites with tunable mechanical properties. Journal of Materials Chemistry B, 4(13), 2273–2279. (PMID: 10.1039/C6TB00106H)
Rabea, E. I., Badawy, M.E.-T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457–1465. (PMID: 10.1021/bm034130m)
Azuma, K., Ifuku, S., Osaki, T., Okamoto, Y., & Minami, S. (2014). Preparation and biomedical applications of chitin and chitosan nanofibers. Journal of biomedical nanotechnology, 10(10), 2891–2920. (PMID: 10.1166/jbn.2014.1882)
Niederhofer, A., & Müller, B. W. (2004). A method for direct preparation of chitosan with low molecular weight from fungi. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 101–105. (PMID: 10.1016/S0939-6411(03)00189-9)
No, H. K., & Meyers, S. P. (2000). Application of chitosan for treatment of wastewaters. In Reviews of environmental contamination and toxicology (pp. 1–27). Springer.
Mo, J., Yang, Q., Zhang, N., Zhang, W., Zheng, Y., & Zhang, Z. (2018). A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. Journal of environmental management, 227, 395–405. (PMID: 10.1016/j.jenvman.2018.08.069)
Boardman, S. J., Lad, R., Green, D. C., & Thornton, P. D. (2017). Chitosan hydrogels for targeted dye and protein adsorption. Journal of Applied Polymer Science, 134(21).
Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine drugs, 13(3), 1133–1174. (PMID: 10.3390/md13031133)
Nwe, N., Furuike, T., & Tamura, H. (2011). Chitosan from aquatic and terrestrial organisms and microorganisms: production, properties and applications. In BM Johnson and ZE Berkel (Ed.), Biodegradable Materials.
Philibert, T., Lee, B. H., & Fabien, N. (2017, April 1). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied Biochemistry and Biotechnology. Humana Press Inc. https://doi.org/10.1007/s12010-016-2286-2.
Ghormade, V., Pathan, E. K., & Deshpande, M. V. (2017, November 1). Can fungi compete with marine sources for chitosan production? International Journal of Biological Macromolecules. Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2017.01.112.
Elsoud, M. M. A., & Kady, E. M. El. (n.d.). Current trends in fungal biosynthesis of chitin and chitosan. https://doi.org/10.1186/s42269-019-0105-y.
Pochanavanich, P., & Suntornsuk, W. (2002). Fungal chitosan production and its characterization. Letters in Applied Microbiology, 35(1), 17–21. https://doi.org/10.1046/j.1472-765X.2002.01118.x. (PMID: 10.1046/j.1472-765X.2002.01118.x12081543)
AliIkram-ul-Haq, S., Qadeer, M. A., & Iqbal, J. (2002). Production of citric acid by Aspergillus niger using cane molasses in a stirred fermentor. Electronic Journal of Biotechnology, 5(3), 258–271. https://doi.org/10.2225/vol5-issue3-fulltext-3. (PMID: 10.2225/vol5-issue3-fulltext-3)
Hahn, T., Paul, A., Falabella, P., Zibek, S., & Salvia, R. (2020). Current state of chitin puri fi cation and chitosan production from insects, (July). https://doi.org/10.1002/jctb.6533.
Sebastian, J., Rouissi, T., & Brar, S. K. (2020). challenges. https://doi.org/10.1016/B978-0-12-817970-3.00014-6.
Massoud, R., Hadiani, M. R., Hamzehlou, P., & Khosravi-Darani, K. (2019, January 1). Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic Journal of Biotechnology. Pontificia Universidad Catolica de Valparaiso. https://doi.org/10.1016/j.ejbt.2018.11.003.
Jacob, F. F., Hutzler, M., & Methner, F. J. (2019). Comparison of various industrially applicable disruption methods to produce yeast extract using spent yeast from top-fermenting beer production: Influence on amino acid and protein content. European Food Research and Technology, 245(1), 95–109. https://doi.org/10.1007/s00217-018-3143-z. (PMID: 10.1007/s00217-018-3143-z)
Avramia, I., & Amariei, S. (2021). Spent Brewer’s yeast as a source of insoluble β-glucans. International Journal of Molecular Sciences, 22(2), 1–26. https://doi.org/10.3390/ijms22020825. (PMID: 10.3390/ijms22020825)
Soares, E. V., & Soares, H. M. V. M. (2012, May 3). Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: A review. Environmental Science and Pollution Research. Springer. https://doi.org/10.1007/s11356-011-0671-5.
Brady, D., & Duncan, J. R. (1994). Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 41(1), 149–154. https://doi.org/10.1007/BF00166098. (PMID: 10.1007/BF00166098)
Bemena, L. D., Mukama, O., Neiman, A. M., Li, Z., Gao, X. D., & Nakanishi, H. (2017). In vitro reconstitution of the yeast spore wall dityrosine layer discloses the mechanism of its assembly. Journal of Biological Chemistry, 292(38), 15880–15891. https://doi.org/10.1074/jbc.M117.786202. (PMID: 10.1074/jbc.M117.786202)
Younis, G., Awad, A., Dawod, R. E., & Yousef, N. E. (2017). Antimicrobial activity of yeasts against some pathogenic bacteria. Veterinary World, 10(8), 979–983. https://doi.org/10.14202/vetworld.2017.979-983. (PMID: 10.14202/vetworld.2017.979-983289196935591489)
Lesage, G., & Bussey, H. (2006). Cell Wall Assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70(2), 317–343. https://doi.org/10.1128/mmbr.00038-05. (PMID: 10.1128/mmbr.00038-05167603061489534)
Tong, Z., Zheng, X., Tong, Y., Shi, Y. C., & Sun, J. (2019, February 4). Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microbial Cell Factories. BioMed Central Ltd. https://doi.org/10.1186/s12934-019-1064-6.
Ma, Q., Gao, X., Bi, X., Xia, M., Han, Q., Peng, M., & Wang, M. (2021). Combination of steam explosion and ionic liquid pretreatments for efficient utilization of fungal chitin from citric acid fermentation residue. Biomass and Bioenergy, 145, 105967. https://doi.org/10.1016/j.biombioe.2021.105967. (PMID: 10.1016/j.biombioe.2021.105967)
Palumbo, J. D., O’keeffe, T. L., & Abbas, H. K. (2008). Microbial interactions with mycotoxigenic fungi and mycotoxins. Toxin Reviews, 27(42067), 261–285. https://doi.org/10.1080/15569540802416301. (PMID: 10.1080/15569540802416301)
Ghormade, V. (2017). Diversity of natural yeast flora of grapes and its significance in wine making diversity of natural yeast flora of grapes and its significance in wine making, (May). https://doi.org/10.1007/978-981-10-2621-8.
Plascencia-Jatomea, M., Susana, M., Gómez, Y., & Velez-Haro, J. M. (2014). Aspergillus spp. (Black Mold). In Postharvest Decay: Control Strategies (pp. 267–286). Elsevier Inc. https://doi.org/10.1016/B978-0-12-411552-1.00008-9.
Matica, M. A., Aachmann, F. L., Tøndervik, A., Sletta, H., & Ostafe, V. (2019, December 1). Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International Journal of Molecular Sciences. MDPI AG. https://doi.org/10.3390/ijms20235889.
Askarian, F., Sangvik, M., Hanssen, A. M., Snipen, L., Sollid, J. U. E., & Johannessen, M. (2014). Staphylococcus aureus nasal isolates from healthy individuals cause highly variable host cell responses in vitro: The Tromsø Staph and Skin Study. Pathogens and Disease, 70(2), 158–166. https://doi.org/10.1111/2049-632X.12099. (PMID: 10.1111/2049-632X.1209924115641)
Maghsoodi, V., & Yaghmaei, S. (2010). Comparison of solid substrate and submerged fermentation for chitosan production by aspergillus niger. Scientia Iranica, 17(2 C), 153–157.
McClenny, N. (2005). Laboratory detection and identification of Aspergillus species by microscopic observation and culture: The traditional approach. Medical Mycology, 43(s1), 125–128. https://doi.org/10.1080/13693780500052222. (PMID: 10.1080/13693780500052222)
Maghsoodi, V., Razavi, J., & Yaghmaei, S. (2009). Production of chitosan by submerged fermentation from Aspergillus niger. Scientia Iranica, 16(2 C), 145–148. Retrieved from www.SID.ir.
Shehu, K., & Bello, M. T. (2011). Effect of environmental factors on the growth of Aspergillus species associated with stored millet grains in Sokoto. Nigerian Journal of Basic and Applied Science, 19(2), 218–223. Retrieved from http://www.ajol.info/index.php/njbas/index.
Kumaresapillai, N., Basha, R. A., & Sathish, R. (2011). Production and evaluation of chitosan from Aspergillus niger MTCC strains. Iranian Journal of Pharmaceutical Research, 10(3), 553–558. https://doi.org/10.22037/ijpr.2011.1003. (PMID: 10.22037/ijpr.2011.1003242503883813029)
Briza, P., Ellinger, A., Winkler, G., & Breitenbach, M. (1988). Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. Journal of Biological Chemistry, 263(23), 11569–11574. (PMID: 10.1016/S0021-9258(18)37997-3)
François, J. M. (2007). A simple method for quantitative determination of polysaccharides in fungal cell walls. Nature Protocols, 1(6), 2995–3000. https://doi.org/10.1038/nprot.2006.457. (PMID: 10.1038/nprot.2006.457)
Abasian, L., Shafiei Alavijeh, R., Satari, B., & Karimi, K. (2020). Sustainable and effective chitosan production by dimorphic fungus Mucor rouxii via replacing yeast extract with fungal extract. Applied Biochemistry and Biotechnology, 191(2), 666–678. https://doi.org/10.1007/s12010-019-03220-w. (PMID: 10.1007/s12010-019-03220-w31845196)
Cabib, E., Blanco, N., Grau, C., Rodríguez-Peña, J. M., & Arroyo, J. (2007). Crh1p and Crh2p are required for the cross-linking of chitin to ?(1–6)glucan in the Saccharomyces cerevisiae cell wall. Molecular Microbiology, 63(3), 921–935. https://doi.org/10.1111/j.1365-2958.2006.05565.x. (PMID: 10.1111/j.1365-2958.2006.05565.x17302808)
Maghsoodi, V., & Yaghmaei, S. (2010). Comparison of solid substrate and submerged fermentation for chitosan production by Aspergillus niger. Transactions C: Chemistry and Chemical Engineering, 17(2). Retrieved from www.SID.ir.
Viccini, G., Mitchell, D. A., Gern, J. C., Krieger, N., Mitchell, D. A., Boit, S. D., … Von Meien, O. F. (2001). Analysis of growth kinetic profiles in solid-state fermentation solid-state fermentation bioreactors View project Special Issue in Recent advances in Biocatalysis and Biotransformations (Published in BBA-Proteins and Proteomics) View project Analysis of Growth Kinetic Profiles in Solid-State Fermentation. Food Technology and Biotechnology. Retrieved from https://www.researchgate.net/publication/224893510.
Vaingankar, P. N., & Juvekar, A. R. (2014). Fermentative production of mycelial chitosan from Zy-gomycetes: Media optimization and physico-chemical characterization. Advances in Bioscience and Biotechnology, 5, 940. https://doi.org/10.4236/abb.2014.512108. (PMID: 10.4236/abb.2014.512108)
Da Silva Amorim, R. V., De Souza, W., Fukushima, K., & De Campos-Takaki, G. M. (2001). Faster chitosan production by Mucoralean strains in submerged culture. Brazilian Journal of Microbiology, 32(1), 20–23. https://doi.org/10.1590/s1517-83822001000100005. (PMID: 10.1590/s1517-83822001000100005)
Cardoso, A., Lins, C. I. M., Dos Santos, E. R., Silva, M. C. F., & Campos-Takaki, G. M. (2012). Microbial enhance of chitosan production by Rhizopus arrhizus using agroindustrial substrates. Molecules, 17(5), 4904–4914. https://doi.org/10.3390/molecules17054904. (PMID: 10.3390/molecules17054904225435056269018)
Cardoso, A., Marques, A., Campos Marinho, P. H., Shiosaki, R. K., & Campos Takaki, G. M. (2010). Influence of the heavy metals on chitosan production by Absidia corymbifera UCP 0134 (pp. 176–180). World Scientific Pub Co Pte Lt. https://doi.org/10.1142/9789814322119_0039.
Maghsoudi, V., Yaghmaei, S., & Beygi, S. (2008). Influence of different nitrogen sources on amount of chitosan production by Aspergillus niger in solid state fermentation. Retrieved from https://www.sid.ir/en/journal/ViewPaper.aspx?id=109003.
Nwe, N., Tetsuya, & Tamur, H. (2010). Production of fungal chitosan by enzymatic method and applications in plant tissue culture and tissue engineering: 11 years of our progress, Present Situation and Future Prospects. In Biopolymers. Sciyo. https://doi.org/10.5772/10261.
Fazenda, M. L., Seviour, R., McNeil, B., & Harvey, L. M. (2008). Submerged culture fermentation of “Higher Fungi”: The macrofungi. Advances in Applied Microbiology, 63, 33–103. https://doi.org/10.1016/S0065-2164(07)00002-0. (PMID: 10.1016/S0065-2164(07)00002-018395125)
Ferreira, J. A., Mahboubi, A., Lennartsson, P. R., & Taherzadeh, M. J. (2016). Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Bioresource Technology, 215, 334–345. https://doi.org/10.1016/j.biortech.2016.03.018. (PMID: 10.1016/j.biortech.2016.03.01826996263)
Zhang, H., Tachikawa, H., Gao, X. D., & Nakanishi, H. (2014). Applied usage of yeast spores as chitosan beads. Applied and Environmental Microbiology, 80(16), 5098–5105. https://doi.org/10.1128/AEM.00677-14. (PMID: 10.1128/AEM.00677-14249073394135753)
Monarul Islam, M., Md Masum, S., Mahbubur Rahman, M., Ashraful Islam Molla, M., Shaikh, A. A., & Roy, S. (2011). Preparation of chitosan from shrimp shell and investigation of its properties. International Journal of Basic & Applied Sciences IJBAS-IJENS, 11(01).
Hossain, M. S., & Iqbal, A. (2014). Production and characterization of chitosan from shrimp waste. J. Bangladesh Agril. Univ, 12(1), 153–160. Retrieved from https://www.banglajol.info/index.php/JBAU/article/view/21405.
Tharanathan, R. N., & Kittur, F. S. (2003). Chitin - The Undisputed Biomolecule of Great Potential. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408690390826455. (PMID: 10.1080/1040869039082645512587986)
Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., & Stepnowski, P. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs. MDPI AG. https://doi.org/10.3390/md8051567.
Czechowska-Biskup, R., Jarosińska, D., Rokita, B., Ulański, P., & Rosiak, J. M. (2012). Determination of degree of deacetylation of chitosan-comparision of methods. Progress on Chemistry and Application of Chitin and its Derivatives, 17, 5–20.
Gregorio-Jauregui, K. M., Pineda, M. G., Rivera-Salinas, J. E., Hurtado, G., Saade, H., Martinez, J. L., Ilyina, A., & López, R. G. (2012). One-step method for preparation of magnetic nanoparticles coated with chitosan. Journal of Nanomaterials. https://doi.org/10.1155/2012/813958. (PMID: 10.1155/2012/813958)
Domszy, J., & Roberts, G. (1985). Evaluation of infrared spectroscopic techniques for analysing chitosan. Die Makromolekulare Chemie, 186(8), 1671–1677. https://doi.org/10.1002/macp.1985.021860815. (PMID: 10.1002/macp.1985.021860815)
Mozafari, M., Moztarzadeh, J., Alhosseini, N., & AsgariKargozars, D. (2012). Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. International Journal of Nanomedicine, 7, 25. https://doi.org/10.2147/ijn.s25376. (PMID: 10.2147/ijn.s25376222758203260948)
Bhuvaneshwari, S., & Sivasubramanian, V. (2013). Comparative studies for chitosan yield and chelating ability of Aspergillus niger and Rhizopus oryzae. Indian Journal of Biotechnology (Vol. 12). Retrieved from http://nopr.niscair.res.in/handle/123456789/21852.
Chatterjee, S., Adhya, M., Guha, A. K., & Chatterjee, B. P. (2005). Chitosan from Mucor rouxii: Production and physico-chemical characterization. Process Biochemistry, 40, 395–400. https://doi.org/10.1016/j.procbio.2004.01.025. (PMID: 10.1016/j.procbio.2004.01.025)
Yang, L., Li, X., Lai, C., Fan, Y., Ouyang, J., & Yong, Q. (2017). Fungal chitosan production using xylose rich of corn stover prehydrolysate by Rhizopus oryzae. Biotechnology and Biotechnological Equipment, 31(6), 1160–1166. https://doi.org/10.1080/13102818.2017.1370678. (PMID: 10.1080/13102818.2017.1370678)
Gharieb, M. M., Sabha, ;, El-Sabbagh, M., Shalaby, M. A., & Darwesh, O. M. (2015). Production of chitosan from different species of zygomycetes and its antimicrobial activity. International Journal of Scientific & Engineering Research, 6(4).
Kaya, M., Akata, I., Baran, T., & Menteş, A. (2015). Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Food Biophysics, 10(2), 162–168. https://doi.org/10.1007/s11483-014-9378-8. (PMID: 10.1007/s11483-014-9378-8)
Goy, R. C., Morais, S. T. B., & Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth. Brazilian Journal of Pharmacognosy, 26(1), 122–127. https://doi.org/10.1016/j.bjp.2015.09.010. (PMID: 10.1016/j.bjp.2015.09.010)
Chang, A. K. T., Frias, R. R., Alvarez, L. V., Bigol, U. G., & Guzman, J. P. M. D. (2019). Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatalysis and Agricultural Biotechnology, 17, 189–195. https://doi.org/10.1016/J.BCAB.2018.11.016. (PMID: 10.1016/J.BCAB.2018.11.016)
Shanmugam, A., Kathiresan, K., & Nayak, L. (2016). Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnology Reports, 9, 25–30. (PMID: 10.1016/j.btre.2015.10.007)
Logesh, A. R., Thillaimaharani, K., Sharmila, K., Kalaiselvam, M., & Raffi SM. (2012). Production of chitosan from endolichenic fungi isolated from mangrove environment and its antagonistic activity. Asian Pacific Journal of Tropical Biomedicine, 2(2), 140–143. Retrieved from https://www.sciencedirect.com/science/article/pii/S2221169111602086.
Nair StJoseph, S., Kayakkeel Assainar, S., Assainar, S. K., & Nair, S. P. (2014). Action of chitosan and its derivatives on clinical pathogens antifungal activity View project Antimicrobial activity View project Action of Chitosan and its derivatives on clinical pathogens. Int.J.Curr.Microbiol.App.Sci, 3(10), 748–759. Retrieved from http://www.ijcmas.com.
Tayel, A. A., Moussa, S., Opwis, K., Knittel, D., Schollmeyer, E., & Nickisch-Hartfiel, A. (2010). Inhibition of microbial pathogens by fungal chitosan. International Journal of Biological Macromolecules, 47, 10–14. https://doi.org/10.1016/j.ijbiomac.2010.04.005. (PMID: 10.1016/j.ijbiomac.2010.04.00520416334)
Tayel, A. A., Gharieb, M. M., Zaki, H. R., & Elguindy, N. M. (2016). Bio-clarification of water from heavy metals and microbial effluence using fungal chitosan. International Journal of Biological Macromolecules, 83, 277–281. Retrieved from https://www.sciencedirect.com/science/article/pii/S0141813015301689.
Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173–1182. (PMID: 10.1016/j.foodchem.2008.11.047)
Burkatovskaya, M., Tegos, G. P., Swietlik, E., Demidova, T. N., Castano, A. P., & Hamblin, M. R. (n.d.). Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials, 27(22), 4157–4164.
Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., & Yu, L. J. (2006). Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 64(1), 60–65. https://doi.org/10.1016/j.carbpol.2005.10.028. (PMID: 10.1016/j.carbpol.2005.10.028)
Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Elsevier. https://doi.org/10.1016/j.carres.2004.09.007. (PMID: 10.1016/j.carres.2004.09.007)
Palermo, E. F., & Kuroda, K. (2010, August 19). Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Applied Microbiology and Biotechnology. Springer. https://doi.org/10.1007/s00253-010-2687-z.
Gabriel, G. J., Maegerlein, J. A., Nelson, C. F., Dabkowski, J. M., Eren, T., Nüsslein, K., & Tew, G. N. (2009). Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers. Chemistry - A European Journal, 15(2), 433–439. https://doi.org/10.1002/chem.200801233. (PMID: 10.1002/chem.200801233)
de Freitas, R. A., Drenski, M. F., Alb, A. M., & Reed, W. F. (2010). Characterization of stability, aggregation, and equilibrium properties of modified natural products; The case of carboxymethylated chitosans. Materials Science and Engineering C, 30(1), 34–41. https://doi.org/10.1016/j.msec.2009.08.005. (PMID: 10.1016/j.msec.2009.08.005)
Hosseinnejad, M., & Mahdi, S. (2016). International Journal of Biological Macromolecules Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85, 467–475. https://doi.org/10.1016/j.ijbiomac.2016.01.022. (PMID: 10.1016/j.ijbiomac.2016.01.02226780706)
Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Press. https://doi.org/10.3934/microbiol.2020001. (PMID: 10.3934/microbiol.2020001)
Muzzarelli, R. A. A., Tanfani, F., & Scarpini, G. (1980). Chelating, film-forming, and coagulating ability of the chitosan–glucan complex from Aspergillus niger industrial wastes. Biotechnology and Bioengineering, 22(4), 885–896. https://doi.org/10.1002/bit.260220412. (PMID: 10.1002/bit.2602204127362863)
Brasselet, C., Pierre, G., Dubessay, P., Dols-Lafargue, M., Coulon, J., Maupeu, J., Vallet-Courbin, A., de Baynast, H., Doco, T., Michaud, P., & Delattre, C. (2019). Modification of chitosan for the generation of functional derivatives. Applied Sciences, 9(7), 1321. https://doi.org/10.3390/app9071321. (PMID: 10.3390/app9071321)
Harish Prashanth, K. V., & Tharanathan, R. N. (2007). Chitin/chitosan: Modifications and their unlimited application potential-an overview. Trends in Food Science and Technology, 18(3), 117–131. https://doi.org/10.1016/j.tifs.2006.10.022. (PMID: 10.1016/j.tifs.2006.10.022)
فهرسة مساهمة: Keywords: Aspergillus niger; Baker’s yeast; Degree of deacetylation; FTIR; Staphylococcus aureus; Zones of inhibition
المشرفين على المادة: 0 (Anti-Infective Agents)
9012-76-4 (Chitosan)
تواريخ الأحداث: Date Created: 20210818 Date Completed: 20220117 Latest Revision: 20220117
رمز التحديث: 20221213
DOI: 10.1007/s12010-021-03639-0
PMID: 34406627
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0291
DOI:10.1007/s12010-021-03639-0