دورية أكاديمية

Secretome screening reveals immunomodulating functions of IFNα-7, PAP and GDF-7 on regulatory T-cells.

التفاصيل البيبلوغرافية
العنوان: Secretome screening reveals immunomodulating functions of IFNα-7, PAP and GDF-7 on regulatory T-cells.
المؤلفون: Ding M; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden. mei.ding@astrazeneca.com., Malhotra R; Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden., Ottosson T; Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden., Lundqvist M; Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden., Mebrahtu A; Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden., Brengdahl J; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden., Gehrmann U; Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden., Bäck E; Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden., Ross-Thriepland D; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK., Isaksson I; Sample Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden., Magnusson B; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden., Sachsenmeier KF; Translational Medicine, Oncology R&D, AstraZeneca, Boston, USA., Tegel H; Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden., Hober S; Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden., Uhlén M; Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden., Mayr LM; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK., Davies R; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK., Rockberg J; Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden., Schiavone LH; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden. lovisa.holmberg.schiavone@astrazeneca.com.
المصدر: Scientific reports [Sci Rep] 2021 Aug 18; Vol. 11 (1), pp. 16767. Date of Electronic Publication: 2021 Aug 18.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Bone Morphogenetic Proteins/*immunology , Growth Differentiation Factors/*immunology , Immunologic Factors/*immunology , Interferon-alpha/*immunology , Pancreatitis-Associated Proteins/*immunology , T-Lymphocytes, Regulatory/*immunology, Bone Morphogenetic Proteins/genetics ; Growth Differentiation Factors/genetics ; Humans ; Immunologic Factors/genetics ; Interferon-alpha/genetics ; Pancreatitis-Associated Proteins/genetics
مستخلص: Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.
(© 2021. The Author(s).)
References: Adeegbe, D. O. & Nishikawa, H. Natural and induced T regulatory cells in cancer. Front. Immunol. 4, 190 (2013). (PMID: 23874336370815510.3389/fimmu.2013.00190)
Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011). (PMID: 21488902307779810.1111/j.1600-065X.2011.01018.x)
Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008). (PMID: 1851092310.1016/j.cell.2008.05.009)
Grant, C. R., Liberal, R., Mieli-Vergani, G., Vergani, D. & Longhi, M. S. Regulatory T-cells in autoimmune diseases: Challenges, controversies and—yet—unanswered questions. Autoimmun. Rev. 14, 105–116 (2015). (PMID: 2544968010.1016/j.autrev.2014.10.012)
Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A. Induced regulatory T cells: Their development, stability, and applications. Trends Immunol. 37, 803–811 (2016). (PMID: 2762311410.1016/j.it.2016.08.012)
Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008). (PMID: 1884575810.1126/science.1160062)
Shevach, E. M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009). (PMID: 1946498610.1016/j.immuni.2009.04.010)
Tang, Q. & Bluestone, J. A. The Foxp3+ regulatory T cell: A jack of all trades, master of regulation. Nat. Immunol. 9, 239–244 (2008). (PMID: 18285775307561210.1038/ni1572)
Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008). (PMID: 18566595266524910.1038/nri2343)
Cretney, E., Kallies, A. & Nutt, S. L. Differentiation and function of Foxp3(+) effector regulatory T cells. Trends Immunol. 34, 74–80 (2013). (PMID: 2321940110.1016/j.it.2012.11.002)
Fan, X. et al. CD49b defines functionally mature Treg cells that survey skin and vascular tissues. J. Exp. Med. 215, 2796–2814 (2018). (PMID: 30355617621973110.1084/jem.20181442)
Gangaplara, A. et al. Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathog 14, e1006985 (2018). (PMID: 29672594592957010.1371/journal.ppat.1006985)
Mohr, A., Malhotra, R., Mayer, G., Gorochov, G. & Miyara, M. Human FOXP3(+) T regulatory cell heterogeneity. Clin. Transl. Immunol. 7, e1005 (2018). (PMID: 10.1002/cti2.1005)
Ronchetti, S. et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: A key marker of functional regulatory T cells. J. Immunol. Res. 2015, 171520 (2015). (PMID: 25961057441398110.1155/2015/171520)
Chen, W. Tregs in immunotherapy: Opportunities and challenges. Immunotherapy 3, 911–914 (2011). (PMID: 2184307510.2217/imt.11.79)
Zheng, S. G. et al. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J. Immunol. 172, 1531–1539 (2004). (PMID: 1473473110.4049/jimmunol.172.3.1531)
Davidson, T. S., DiPaolo, R. J., Andersson, J. & Shevach, E. M. Cutting edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J. Immunol. 178, 4022–4026 (2007). (PMID: 1737195510.4049/jimmunol.178.7.4022)
Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10, 1178–1184 (2009). (PMID: 19783988289817910.1038/ni.1791)
Srivastava, S., Koch, L. K. & Campbell, D. J. IFNalphaR signaling in effector but not regulatory T cells is required for immune dysregulation during type I IFN-dependent inflammatory disease. J. Immunol. 193, 2733–2742 (2014). (PMID: 2509289410.4049/jimmunol.1401039)
Uhlén, M. et al. The human secretome. Sci. Signal. 12, eaaz0274 (2019). (PMID: 3177212310.1126/scisignal.aaz0274)
Ding, M. et al. A phenotypic screening approach using human Treg cells identified regulators of Forkhead Box p3 expression. ACS Chem. Biol. 14, 543–553 (2019). (PMID: 3080709410.1021/acschembio.9b00075)
Jennbacken, K. et al. Phenotypic screen with the human secretome identifies FGF16 as inducing proliferation of iPSC-derived cardiac progenitor cells. Int. J. Mol. Sci. 20, 1–16 (2019). (PMID: 10.3390/ijms20236037)
Kanje, S. et al. Improvements of a high-throughput protein purification process using a calcium-dependent setup. Protein Expr. Purif. 175, 105698 (2020). (PMID: 3268196010.1016/j.pep.2020.105698)
Tegel, H. et al. High throughput generation of a resource of the human secretome in mammalian cells. New Biotechnol. 58, 45–54 (2020). (PMID: 10.1016/j.nbt.2020.05.002)
Ding, M. et al. Secretome-based screening in target discovery. SLAS Discov. Adv. Life Sci. R&D 25, 535–551 (2020). (PMID: 10.1177/2472555220917113)
Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008). (PMID: 1846759110.1126/science.1154370)
Gonzalez, R. et al. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc. Natl. Acad. Sci. USA 107, 3552–3557 (2010). (PMID: 20133595284046710.1073/pnas.0914019107)
Sakaguchi, S., Vignali, D. A., Rudensky, A. Y., Niec, R. E. & Waldmann, H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461–467 (2013). (PMID: 2368109710.1038/nri3464)
Chang, J. H. et al. Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells. Nat. Immunol. 13, 481–490 (2012). (PMID: 22484734336163910.1038/ni.2267)
van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013). (PMID: 23973222413378410.1016/j.immuni.2013.05.018)
Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012). (PMID: 23021222349325610.1016/j.cell.2012.06.053)
Yegutkin, G. G. et al. Consequences of the lack of CD73 and prostatic acid phosphatase in the lymphoid organs. Mediat. Inflamm. 2014, 485743 (2014). (PMID: 10.1155/2014/485743)
Ortlund, E., LaCount, M. W. & Lebioda, L. Crystal structures of human prostatic acid phosphatase in complex with a phosphate ion and alpha-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insights into inhibitor design. Biochemistry 42, 383–389 (2003). (PMID: 1252516510.1021/bi0265067)
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003). (PMID: 1261257810.1038/ni904)
Hori, S. Developmental plasticity of Foxp3+ regulatory T cells. Curr. Opin. Immunol. 22, 575–582 (2010). (PMID: 2082901210.1016/j.coi.2010.08.004)
Chen, Q., Kim, Y. C., Laurence, A., Punkosdy, G. A. & Shevach, E. M. IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3+ T cells in vivo. J. Immunol. 186, 6329–6337 (2011). (PMID: 2152538010.4049/jimmunol.1100061)
Curiel, T. J. Regulatory T cells and treatment of cancer. Curr. Opin. Immunol. 20, 241–246 (2008). (PMID: 18508251331930510.1016/j.coi.2008.04.008)
Huber, S. & Schramm, C. TGF-beta and CD4+CD25+ regulatory T cells. Front. Biosci. 11, 1014–1023 (2006). (PMID: 1614679310.2741/1859)
Mazerbourg, S. et al. Identification of receptors and signaling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses. J. Biol. Chem. 280, 32122–32132 (2005). (PMID: 1604901410.1074/jbc.M504629200)
Velonas, V. M., Woo, H. H., dos Remedios, C. G. & Assinder, S. J. Current status of biomarkers for prostate cancer. Int. J. Mol. Sci. 14, 11034–11060 (2013). (PMID: 23708103370971710.3390/ijms140611034)
Quintero, I. B. et al. Prostatic acid phosphatase is not a prostate specific target. Can. Res. 67, 6549–6554 (2007). (PMID: 10.1158/0008-5472.CAN-07-1651)
Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007). (PMID: 17502665211860310.1084/jem.20062512)
Rissiek, A. et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J. Autoimmun. 58, 12–20 (2015). (PMID: 2564020610.1016/j.jaut.2014.12.007)
Schuler, P. J. et al. Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients. Eur. J. Immunol. 42, 1876–1885 (2012). (PMID: 22585562368927110.1002/eji.201142347)
Vijayan, D., Young, A., Teng, M. W. L. & Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709–724 (2017). (PMID: 2905914910.1038/nrc.2017.86)
Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005). (PMID: 1577157310.1146/annurev.immunol.23.021704.115843)
Chen, K., Liu, J. & Cao, X. Regulation of type I interferon signaling in immunity and inflammation: A comprehensive review. J. Autoimmun. 83, 1–11 (2017). (PMID: 2833075810.1016/j.jaut.2017.03.008)
Piconese, S., Pacella, I., Timperi, E. & Barnaba, V. Divergent effects of type-I interferons on regulatory T cells. Cytokine Growth Factor Rev. 26, 133–141 (2015). (PMID: 2546663410.1016/j.cytogfr.2014.10.012)
Lee, S. E. et al. Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice. Gastroenterology 143, 145–154 (2012). (PMID: 2247553410.1053/j.gastro.2012.03.042)
Srivastava, S., Koch, M. A., Pepper, M. & Campbell, D. J. Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection. J. Exp. Med. 211, 961–974 (2014). (PMID: 24711580401090610.1084/jem.20131556)
Loebbermann, J. et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 5, 161–172 (2012). (PMID: 22236998328243410.1038/mi.2011.62)
Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S. & Noelle, R. J. Cutting edge: Contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005). (PMID: 1569910310.4049/jimmunol.174.4.1783)
Schreiber, G. The molecular basis for differential type I interferon signaling. J. Biol. Chem. 292, 7285–7294 (2017). (PMID: 28289098541803110.1074/jbc.R116.774562)
Matikainen, S. et al. Interferon-alpha activates multiple STAT proteins and upregulates proliferation-associated IL-2Ralpha, c-myc, and pim-1 genes in human T cells. Blood 93, 1980–1991 (1999). (PMID: 1006867110.1182/blood.V93.6.1980.406k20_1980_1991)
Chen, C., Rowell, E. A., Thomas, R. M., Hancock, W. W. & Wells, A. D. Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J. Biol. Chem. 281, 36828–36834 (2006). (PMID: 1702818010.1074/jbc.M608848200)
Goldstein, J. D. et al. Inhibition of the JAK/STAT signaling pathway in regulatory T cells reveals a very dynamic regulation of Foxp3 expression. PLoS ONE 11, e0153682 (2016). (PMID: 27077371483181110.1371/journal.pone.0153682)
Jansson, A. M. et al. The interleukin-like epithelial–mesenchymal transition inducer ILEI exhibits a non-interleukin-like fold and is active as a domain-swapped dimer. J. Biol. Chem. 292, 15501–15511 (2017). (PMID: 28751379560240710.1074/jbc.M117.782904)
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). (PMID: 2704300210.1038/nbt.3519)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
Varemo, L., Nielsen, J. & Nookaew, I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 41, 4378–4391 (2013). (PMID: 23444143363210910.1093/nar/gkt111)
Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015). (PMID: 26771021470796910.1016/j.cels.2015.12.004)
Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013). (PMID: 23323831361832110.1186/1471-2105-14-7)
Birmingham, A. et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat. Methods 6, 569–575 (2009). (PMID: 19644458278997110.1038/nmeth.1351)
المشرفين على المادة: 0 (Bone Morphogenetic Proteins)
0 (GDF7 protein, human)
0 (Growth Differentiation Factors)
0 (IFNA7 protein, human)
0 (Immunologic Factors)
0 (Interferon-alpha)
0 (Pancreatitis-Associated Proteins)
0 (REG3A protein, human)
تواريخ الأحداث: Date Created: 20210819 Date Completed: 20211111 Latest Revision: 20230206
رمز التحديث: 20230206
مُعرف محوري في PubMed: PMC8373891
DOI: 10.1038/s41598-021-96184-z
PMID: 34408239
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-021-96184-z