دورية أكاديمية

Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans.

التفاصيل البيبلوغرافية
العنوان: Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans.
المؤلفون: Kanen JW; Department of Psychology, University of Cambridge, Cambridge, UK. jonathan.kanen@gmail.com.; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. jonathan.kanen@gmail.com., Apergis-Schoute AM; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.; Department of Neuroscience, Psychology, and Behaviour, University of Leicester, Leicester, UK., Yellowlees R; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK., Arntz FE; Department of Psychology, Leiden University, Leiden, The Netherlands., van der Flier FE; Department of Experimental Psychology and Helmholtz Institute, Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, The Netherlands., Price A; Department of Psychiatry, University of Cambridge, Cambridge, UK.; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK., Cardinal RN; Department of Psychiatry, University of Cambridge, Cambridge, UK.; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK., Christmas DM; Department of Psychiatry, University of Cambridge, Cambridge, UK.; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK., Clark L; Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada., Sahakian BJ; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.; Department of Psychiatry, University of Cambridge, Cambridge, UK., Crockett MJ; Department of Psychology, Yale University, New Haven, CT, USA., Robbins TW; Department of Psychology, University of Cambridge, Cambridge, UK.; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
المصدر: Molecular psychiatry [Mol Psychiatry] 2021 Dec; Vol. 26 (12), pp. 7200-7210. Date of Electronic Publication: 2021 Aug 24.
نوع المنشور: Journal Article; Randomized Controlled Trial; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Specialist Journals Country of Publication: England NLM ID: 9607835 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5578 (Electronic) Linking ISSN: 13594184 NLM ISO Abbreviation: Mol Psychiatry Subsets: MEDLINE
أسماء مطبوعة: Publication: 2000- : Houndmills, Basingstoke, UK : Nature Publishing Group Specialist Journals
Original Publication: Houndmills, Hampshire, UK ; New York, NY : Stockton Press, c1996-
مواضيع طبية MeSH: Reversal Learning*/physiology , Serotonin*, Conditioning, Operant ; Humans ; Punishment ; Reward
مستخلص: Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
(© 2021. The Author(s).)
References: Bromberg-Martin ES, Hikosaka O, Nakamura K. Coding of task reward value in the dorsal raphe nucleus. J Neurosci. 2010;30:6262–72. (PMID: 20445052346797110.1523/JNEUROSCI.0015-10.2010)
Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol. 2017;31:1091–120. (PMID: 28858536560629710.1177/0269881117725915)
Cohen JY, Amoroso MW, Uchida N. Serotonergic neurons signal reward and punishment on multiple timescales. Elife. 2015;2015:3–5.
Cools R, Roberts AC, Robbins TW. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci. 2008;12:31–40. (PMID: 1806904510.1016/j.tics.2007.10.011)
Deakin JFW. The origins of ‘5-HT and mechanisms of defence’ by Deakin and Graeff: a personal perspective. J Psychopharmacol. 2013;27:1084–9. (PMID: 2406779010.1177/0269881113503508)
Li D, Mabrouk OS, Liu T, Tian F, Xu G, Rengifo S, et al. Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest. Proc Natl Acad Sci USA. 2015;112:E2073–82. (PMID: 258480074413312)
Matias S, Lottem E, Dugué GP, Mainen ZF. Activity patterns of serotonin neurons underlying cognitive flexibility. Elife. 2017;6:1–24. (PMID: 10.7554/eLife.20552)
Ranade SP, Mainen ZF. Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J Neurophysiol. 2009;102:3026–37. (PMID: 1971037510.1152/jn.00507.2009)
Seymour B, Daw ND, Roiser JP, Dayan P, Dolan R. Serotonin selectively modulates reward value in human decision-making. J Neurosci. 2012;32:5833–42. (PMID: 22539845532145210.1523/JNEUROSCI.0053-12.2012)
Takase LF, Nogueira MI, Baratta M, Bland ST, Watkins LR, Maier SF, et al. Inescapable shock activates serotonergic neurons in all raphe nuclei of rat. Behav Brain Res. 2004;153:233–9. (PMID: 1521972410.1016/j.bbr.2003.12.020)
Apergis-Schoute AM, Gillan CM, Fineberg NA, Fernandez-Egea E, Sahakian BJ, Robbins TW. Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc Natl Acad Sci USA. 2017;114:3216–21. (PMID: 28265059537340710.1073/pnas.1609194114)
Remijnse PL, Nielen MMA, Van Balkom AJLM, Cath DC, Van Oppen P, Uylings HBM, et al. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry. 2006;63:1225–36. (PMID: 1708850310.1001/archpsyc.63.11.1225)
Homan P, Levy I, Feltham E, Gordon C, Hu J, Li J, et al. Neural computations of threat in the aftermath of combat trauma. Nat Neurosci. 2019;22:470–6. (PMID: 30664770682991010.1038/s41593-018-0315-x)
Waltz JA, Gold JM. Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophr Res. 2007;93:296–303. (PMID: 17482797206359210.1016/j.schres.2007.03.010)
Verdejo-Garcia A, Clark L, Verdejo-Román J, Albein-Urios N, Martinez-Gonzalez JM, Gutierrez B, et al. Neural substrates of cognitive flexibility in cocaine and gambling addictions. Br J Psychiatry. 2015;207:158–64. (PMID: 2604534610.1192/bjp.bp.114.152223)
Reiter AMF, Deserno L, Kallert T, Heinze H-J, Heinz A, Schlagenhauf F. Behavioral and neural signatures of reduced updating of alternative options in alcohol-dependent patients during flexible decision-making. J Neurosci. 2016;36:10935–48. (PMID: 27798176670565310.1523/JNEUROSCI.4322-15.2016)
Kanen JW, Ersche KD, Fineberg NA, Robbins TW, Cardinal RN. Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents. Psychopharmacology. 2019;236:2337–58. (PMID: 31324936682048110.1007/s00213-019-05325-w)
McLaughlin NCR, Strong D, Abrantes A, Garnaat S, Cerny A, O’Connell C, et al. Extinction retention and fear renewal in a lifetime obsessive-compulsive disorder sample. Behav Brain Res. 2015;280:72–7. (PMID: 2544674910.1016/j.bbr.2014.11.011)
Milad MR, Furtak SC, Greenberg JL, Keshaviah A, Im JJ, Falkenstein MJ, et al. Deficits in conditioned fear extinction in obsessive-compulsive disorder and neurobiological changes in the fear circuit. JAMA Psychiatry. 2013;70:608–18. (PMID: 2374004910.1001/jamapsychiatry.2013.914)
Holt DJ, Coombs G, Zeidan MA, Goff DC, Milad MR. Failure of neural responses to safety cues in schizophrenia. Arch Gen Psychiatry. 2012;69:893–903. (PMID: 22945619376703610.1001/archgenpsychiatry.2011.2310)
Tuominen L, DeCross S, Boeke E, Cassidy C, Freudenreich O, Shinn A, et al. Neural abnormalities in fear generalization in schizophrenia and associations with negative symptoms. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021. https://pubmed.ncbi.nlm.nih.gov/33524600/ . [Epub ahead of print].
Duits P, Cath DC, Lissek S, Hox JJ, Hamm AO, Engelhard IM, et al. Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depress Anxiety. 2015;32:239–53. (PMID: 2570348710.1002/da.22353)
Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66:1075–82. (PMID: 19748076278765010.1016/j.biopsych.2009.06.026)
Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, et al. The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behav Brain Res. 2011;223:403–10. (PMID: 21536077311977110.1016/j.bbr.2011.04.025)
Marin MF, Zsido RG, Song H, Lasko NB, Killgore WDS, Rauch SL, et al. Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders. JAMA Psychiatry. 2017;74:622–31. (PMID: 28403387553983710.1001/jamapsychiatry.2017.0329)
Cunningham KA, Howell LL, Anastasio NC. Serotonin neurobiology in cocaine use disorder. In: Muller C, Cunningham KA, editors. Handb. Behav. Neurobiol. Serotonin. 2nd ed. Cambridge, MA: Academic Press; 2020. p. 745–802.
Dayan P, Huys QJM. Serotonin in affective control. Annu Rev Neurosci. 2009;32:95–126. (PMID: 1940072210.1146/annurev.neuro.051508.135607)
Dersken M, Feenstra M, Willuhn I, Denys D. The serotonergic system in obsessive-compulsive disorder. In: Muller C, Cunningham KA, editors. Handb. Behav. Neurobiol. Serotonin. 2nd ed. Cambridge, MA: Academic Press; 2020. p. 865–92.
López-Figueroa AL, Norton CS, López-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, et al. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry. 2004;55:225–33. (PMID: 1474446210.1016/j.biopsych.2003.09.017)
Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-00951-9 .
Phillips BU, Robbins TW. The role of central serotonin in impulsivity, compulsivity and decision-making: comparative studies in experimental animals and humans. In: Muller CP, Cunningham KA, editors. Handb. Neurobiol. Serotonin. 2nd ed. Cambridge, MA: American Press; 2020. p. 531–48.
Quednow B, Geyer M, Halberstadt A. Serotonin and schizophrenia. In: Muller C, Cunningham KA, editors. Handb. Behav. Neurobiol. Serotonin. 2nd Ed. Cambridge, MA: Academic Press; 2020. p. 711–44.
Zangrossi H, Del Ben CM, Graeff FG, Guimarães FS. Serotonin in Panic and Anxiety Disorders. In: Muller C, Cunningham KA, editors. Handb. Behav. Neurobiol. Serotonin. 2nd ed. Cambridge, MA: Academic Press; 2020. p. 611–34.
Wilson J, Kalasinsky K, Levey A, Bergeron C, Reiber G, Anthony R, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med. 1996;2:699–703. (PMID: 864056510.1038/nm0696-699)
Kish SJ, Fitzmaurice PS, Boileau I, Schmunk GA, Ang LC, Furukawa Y, et al. Brain serotonin transporter in human methamphetamine users. Psychopharmacology. 2009;202:649–61. (PMID: 1884134810.1007/s00213-008-1346-x)
Matsumoto R, Ichise M, Ito H, Ando T, Takahashi H, Ikoma Y, et al. Reduced serotonin transporter binding in the insular cortex in patients with obsessive-compulsive disorder: a [11C]DASB PET study. Neuroimage. 2010;49:121–6. (PMID: 1966055410.1016/j.neuroimage.2009.07.069)
Hasselbalch SG, Hansen ES, Jakobsen TB, Pinborg LH, Lønborg JH, Bolwig TG. Reduced midbrain-pons serotonin transporter binding in patients with obsessive-compulsive disorder. Acta Psychiatr Scand. 2007;115:388–94. (PMID: 1743041710.1111/j.1600-0447.2006.00940.x)
Hesse S, Müller U, Lincke T, Barthel H, Villmann T, Angermeyer MC, et al. Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder. Psychiatry Res Neuroimaging. 2005;140:63–72. (PMID: 10.1016/j.pscychresns.2005.07.002)
Reimold M, Smolka MN, Zimmer A, Batra A, Knobel A, Solbach C, et al. Reduced availability of serotonin transporters in obsessive-compulsive disorder correlates with symptom severity—a [11C]DASB PET study. J Neural Transm. 2007;114:1603–9. (PMID: 1771371910.1007/s00702-007-0785-6)
Stengler-Wenzke K, Müller U, Angermeyer MC, Sabri O, Hesse S. Reduced serotonin transporter-availability in obsessive-compulsive disorder (OCD). Eur Arch Psychiatry Clin Neurosci. 2004;254:252–5. (PMID: 1530939610.1007/s00406-004-0489-y)
Zitterl W, Aigner M, Stompe T, Zitterl-Eglseer K, Gutierrez-Lobos K, Schmidl-Mohl B, et al. [123I]-β-CIT SPECT imaging shows reduced thalamus-hypothalamus serotonin transporter availability in 24 drug-free obsessive-compulsive checkers. Neuropsychopharmacology. 2007;32:1661–8. (PMID: 1719277410.1038/sj.npp.1301290)
Broocks A, Bandelow B, George A, Jestrabeck C, Opitz M, Bartmann U, et al. Increased psychological responses and divergent neuroendocrine responses to m-CPP and ipsapirone in patients with panic disorder. Int Clin Psychopharmacol. 2000;15:153–61. (PMID: 1087087310.1097/00004850-200015030-00004)
Mortimore C, Anderson IM. d-Fenfluramine in panic disorder: a dual role for 5-hydroxytryptamine. Psychopharmacology. 2000;149:251–8. (PMID: 1082340610.1007/s002139900342)
Lanzenberger RR, Mitterhauser M, Spindelegger C, Wadsak W, Klein N, Mien LK, et al. Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psychiatry. 2007;61:1081–9. (PMID: 1697914110.1016/j.biopsych.2006.05.022)
Nash JR, Sargent PA, Rabiner EA, Hood SD, Argyropoulos SV, Potokar JP, et al. Serotonin 5-HT1A receptor binding in people with panic disorder: Positron emission tomography study. Br J Psychiatry. 2008;193:229–34. (PMID: 1875798310.1192/bjp.bp.107.041186)
Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA, et al. Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci. 2004;24:589–91. (PMID: 14736842672926310.1523/JNEUROSCI.4921-03.2004)
Sullivan GM, Ogden RT, Huang YY, Oquendo MA, Mann JJ, Parsey RV. Higher in vivo serotonin-1A binding in posttraumatic stress disorder: a pet study with [11C]WAY-100635. Depress Anxiety. 2013;30:197–206. (PMID: 2340846710.1002/da.22019)
Fineberg NA, Reghunandanan S, Brown A, Pampaloni I. Pharmacotherapy of obsessive-compulsive disorder: Evidence-based treatment and beyond. Aust N Z J Psychiatry. 2013;47:121–41. (PMID: 2312539910.1177/0004867412461958)
Baldwin DS, Anderson IM, Nutt DJ, Allgulander C, Bandelow B, Den Boer JA, et al. Evidence-based pharmacological treatment of anxiety disorders, post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines from the British Association for Psychopharmacology. J Psychopharmacol. 2014;28:403–39. (PMID: 2471361710.1177/0269881114525674)
Gelenberg AJ, Freeman MP, Markowitz JC, Rosenbaum JF, Thase ME, Trivedi MH, et al. American psychiatric association practice guideline for the treatment of patients with major depressive disorder. Am J Psychiatry 2010;167:9–118.
Stahl SM. Stahl’s essential psychopharmacology: neuroscientific basis and practical applications. 4th ed. Cambridge, UK: Cambridge University Press; 2013.
Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 2010;35:1290–301. (PMID: 20107431305534710.1038/npp.2009.233)
Barlow RL, Alsiö J, Jupp B, Rabinovich R, Shrestha S, Roberts AC, et al. Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning. Neuropsychopharmacology. 2015;40:1619–30. (PMID: 25567428491524510.1038/npp.2014.335)
Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC. Cognitive inflexibility after prefrontal serotonin depletion. Science. 2004;304:878–80. (PMID: 1513130810.1126/science.1094987)
Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC. Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex. 2007;17:18–27. (PMID: 1648156610.1093/cercor/bhj120)
Lapiz-Bluhm MDS, Soto-Piña AE, Hensler JG, Morilak DA. Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology. 2009;202:329–41. (PMID: 1858766610.1007/s00213-008-1224-6)
Bauer EP. Serotonin in fear conditioning processes. Behav Brain Res. 2015;277:68–77. (PMID: 2507829410.1016/j.bbr.2014.07.028)
Clarke HF, Hill GJ, Robbins TW, Roberts AC. Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus. J Neurosci. 2011;31:4290–7. (PMID: 21411670308384110.1523/JNEUROSCI.5066-10.2011)
Roberts AC. The importance of serotonin for orbitofrontal function. Biol Psychiatry. 2011;69:1185–91. (PMID: 2135366510.1016/j.biopsych.2010.12.037)
LeDoux JE, Pine DS. Using neuroscience to help understand fear and anxiety: a two-system framework. Am J Psychiatry. 2016;173:1083–93. (PMID: 2760924410.1176/appi.ajp.2016.16030353)
Burghardt NS, Sullivan GM, McEwen BS, Gorman JM, LeDoux JE. The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol Psychiatry. 2004;55:1171–8. (PMID: 1518403610.1016/j.biopsych.2004.02.029)
Burghardt NS, Bush DEA, McEwen BS, LeDoux JE. Acute selective serotonin reuptake inhibitors increase conditioned fear expression: blockade with a 5-HT2C receptor antagonist. Biol Psychiatry. 2007;62:1111–8. (PMID: 17524369212909510.1016/j.biopsych.2006.11.023)
Grillon C, Levenson J, Pine DS. A single dose of the selective serotonin reuptake inhibitor citalopram exacerbates anxiety in humans: a fear-potentiated startle study. Neuropsychopharmacology. 2007;32:225–31. (PMID: 1697189910.1038/sj.npp.1301204)
Grillon C, Chavis C, Covington MF, Pine DS. Two-week treatment with the selective serotonin reuptake inhibitor citalopram reduces contextual anxiety but not cued fear in healthy volunteers: a fear-potentiated startle study. Neuropsychopharmacology. 2009;34:964–71. (PMID: 1880006910.1038/npp.2008.141)
Kanen JW, Arntz FE, Yellowlees R, Christmas DM, Price A, Apergis-Schoute AM, et al. Effect of tryptophan depletion on conditioned threat memory expression: role of intolerance of uncertainty. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:590–8.
Robinson OJ, Overstreet C, Allen PS, Pine DS, Grillon C. Acute tryptophan depletion increases translational indices of anxiety but not fear: serotonergic modulation of the bed nucleus of the stria terminalis? Neuropsychopharmacology. 2012;37:1963–71. (PMID: 22491355337632810.1038/npp.2012.43)
Deakin JFW, Graeff F. 5-HT and mechanisms of defence. J Psychopharmacol. 1991;5:305–15. (PMID: 2228282910.1177/026988119100500414)
Guimarães FS, Mbaya PS, Deakin JFW. Ritanserin facilitates anxiety in a simulated public-speaking paradigm. J Psychopharmacol. 1997;11:225–31. (PMID: 930541410.1177/026988119701100305)
Hensman R, Guimaraes FS, Wang M, Deakin JFW. Effects of ritanserin on aversive classical conditioning in humans. Psychopharmacology. 1991;104:220–4. (PMID: 190858410.1007/BF02244182)
Hindi Attar C, Finckh B, Büchel C. The influence of serotonin on fear learning. PLoS ONE. 2012;7:e42397. (PMID: 22879964341173310.1371/journal.pone.0042397)
Gross CT, Canteras NS. The many paths to fear. Nat Rev Neurosci. 2012;13:651–8. (PMID: 2285083010.1038/nrn3301)
Isosaka T, Matsuo T, Yamaguchi T, Funabiki K, Nakanishi S, Kobayakawa R, et al. Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell. 2015;163:1153–64. (PMID: 2659041910.1016/j.cell.2015.10.047)
Seo C, Guru A, Jin M, Ito B, Sleezer BJ, Ho YY, et al. Intense threat switches dorsal raphe serotonin neurons to a paradoxical operational mode. Science. 2019;363:539–42. (PMID: 10.1126/science.aau8722)
Bel N, Artigas F. Reduction of serotonergic function in rat brain by tryptophan depletion: effects in control and fluvoxamine-treated rats. J Neurochem. 1996;67:669–76. (PMID: 876459410.1046/j.1471-4159.1996.67020669.x)
Bell CJ, Hood SD, Nutt DJ. Acute tryptophan depletion. Part II: clincal effects and implications. Aust N Z J Psychiatry. 2005;39:565–74. (PMID: 1599613710.1080/j.1440-1614.2005.01628.x)
Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa GL. Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci. 1974;14:1321–9. (PMID: 482364410.1016/0024-3205(74)90440-8)
Crockett MJ, Clark L, Roiser JP, Robinson OJ, Cools R, Chase HW, et al. Converging evidence for central 5-HT effects in acute tryptophan depletion. Mol Psychiatry. 2012;17:121–3. (PMID: 2187654410.1038/mp.2011.106)
Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C, et al. Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA. 1997;94:5308–13. (PMID: 91442332467410.1073/pnas.94.10.5308)
Schiller D, Levy I, Niv Y, LeDoux JE, Phelps EA. From fear to safety and back: reversal of fear in the human brain. J Neurosci. 2008;28:11517–25. (PMID: 18987188384478410.1523/JNEUROSCI.2265-08.2008)
Bach DR, Melinscak F. Psychophysiological modelling and the measurement of fear conditioning. Behav Res Ther. 2020;127:103576. (PMID: 32087391707875010.1016/j.brat.2020.103576)
Li J, Schiller D, Schoenbaum G, Phelps EA, Daw ND. Differential roles of human striatum and amygdala in associative learning. Nat Neurosci. 2011;14:1250–2. (PMID: 21909088326826110.1038/nn.2904)
Ojala KE, Bach DR. Measuring learning in human classical threat conditioning: Translational, cognitive and methodological considerations. Neurosci Biobehav Rev. 2020;114:96–112. (PMID: 3234398210.1016/j.neubiorev.2020.04.019)
Tzovara A, Korn CW, Bach DR. Human Pavlovian fear conditioning conforms to probabilistic learning. PLoS Comput Biol. 2018;14:e1006243. (PMID: 30169519611835510.1371/journal.pcbi.1006243)
Evers EA, Cools R, Clark L, van der Veen FM, Jolles J, Sahakian BJ, et al. Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology. 2005;30:1138–47. (PMID: 1568996210.1038/sj.npp.1300663)
Finger EC, Marsh AA, Buzas B, Kamel N, Rhodes R, Vythilingham M, et al. The impact of tryptophan depletion and 5-HTTLPR genotype on passive avoidance and response reversal instrumental learning tasks. Neuropsychopharmacology. 2007;32:206–15. (PMID: 1690010510.1038/sj.npp.1301182)
Murphy FC, Smith KA, Cowen PJ, Robbins TW, Sahakian BJ. The effects of tryptophan depletion on cognitive and affective processing in healthy volunteers. Psychopharmacology. 2002;163:42–53. (PMID: 1218539910.1007/s00213-002-1128-9)
Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ, Robbins TW, et al. Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology. 1994;33:575–88. (PMID: 798429510.1016/0028-3908(94)90089-2)
Rogers RD, Blackshaw AJ, Middleton HC, Matthews K, Hawtin K, Crowley C, et al. Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: Implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology. 1999;146:482–91. (PMID: 1055049910.1007/PL00005494)
Talbot PS, Watson DR, Barrett SL, Cooper SJ. Rapid tryptophan depletion improves decision-making cognition in healthy humans without affecting reversal learning or set shifting. Neuropsychopharmacology. 2006;31:1519–25. (PMID: 1631990910.1038/sj.npp.1300980)
Faulkner P, Deakin JFW. The role of serotonin in reward, punishment and behavioural inhibition in humans: Insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev. 2014;46P3:365–78. (PMID: 10.1016/j.neubiorev.2014.07.024)
Crockett MJ, Clark L, Robbins TW. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. J Neurosci. 2009;29:11993–9. (PMID: 19776285277593310.1523/JNEUROSCI.2513-09.2009)
Crockett MJ, Clark L, Apergis-Schoute AM, Morein-Zamir S, Robbins TW. Serotonin modulates the effects of Pavlovian aversive predictions on response vigor. Neuropsychopharmacology. 2012;37:2244–52. (PMID: 22643930342248910.1038/npp.2012.75)
Geurts DEM, Huys QJM, den Ouden HEM, Cools R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J Neurosci. 2013;33:18932–9. (PMID: 24285898661870210.1523/JNEUROSCI.2749-13.2013)
Worbe Y, Palminteri S, Savulich G, Daw ND, Fernandez-Egea E, Robbins TW, et al. Valence-dependent influence of serotonin depletion on model-based choice strategy. Mol Psychiatry. 2016;21:624–9. (PMID: 2586980810.1038/mp.2015.46)
Cools R, Robinson OJ, Sahakian B. Acute tryptophan depletion in healthy volunteers enhances punishment prediction but does not affect reward prediction. Neuropsychopharmacology. 2008;33:2291–9. (PMID: 1794055310.1038/sj.npp.1301598)
Robinson OJ, Cools R, Sahakian BJ. Tryptophan depletion disinhibits punishment but not reward prediction: Implications for resilience. Psychopharmacology. 2012;219:599–605. (PMID: 2176956610.1007/s00213-011-2410-5)
den Ouden H, Daw ND, Fernandez G, Elshout JA, Rijpkema M, Hoogman M, et al. Dissociable effects of dopamine and serotonin on reversal learning. Neuron. 2013;80:1090–100. (PMID: 10.1016/j.neuron.2013.08.030)
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–3. (PMID: 9881538)
Kanen JW, Arntz FE, Yellowlees R, Cardinal RN, Price A, Christmas DM, et al. Probabilistic reversal learning under acute tryptophan depletion in healthy humans: a conventional analysis. J Psychopharmacol. 2020;34:580–3. (PMID: 32066325722228210.1177/0269881120907991)
Kanen JW, Arntz FE, Yellowlees R, Cardinal RN, Price A, Christmas DM, et al. Serotonin depletion amplifies distinct human social emotions as a function of individual differences in personality. Transl Psychiatry. 2021;11:81.
Apergis-Schoute AM, Ip HYS. Reversal learning in obsessive compulsive disorder: uncertainty, punishment, serotonin and perseveration. Biol Psychiatry Suppl. 2020;87:S125–6. (PMID: 10.1016/j.biopsych.2020.02.339)
Lonsdorf TB, Klingelhöfer-Jens M, Andreatta M, Beckers T, Chalkia A, Gerlicher A, et al. Navigating the garden of forking paths for data exclusions in fear conditioning research. eLife. 2019;8:1–36. (PMID: 10.7554/eLife.52465)
Crockett MJ, Apergis-Schoute A, Herrmann B, Lieberman MD, Lieberman M, Müller U, et al. Serotonin modulates striatal responses to fairness and retaliation in humans. J Neurosci. 2013;33:3505–13. (PMID: 23426678359367810.1523/JNEUROSCI.2761-12.2013)
Passamonti L, Crockett MJ, Apergis-Schoute AM, Clark L, Rowe JB, Calder AJ, et al. Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry. 2012;71:36–43. (PMID: 21920502336826010.1016/j.biopsych.2011.07.033)
Ekman P, Friesen WV. Measuring facial movement. Environ Psychol Nonverbal Behav. 1976;1:56–75. (PMID: 10.1007/BF01115465)
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.
McDonald JH. Handbook of biological statistics. 3rd ed. Baltimore, Maryland: Sparky House Publishing; 2014.
Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15:870–8. (PMID: 1190622710.1006/nimg.2001.1037)
Skandali N, Rowe JB, Voon V, Deakin JB, Cardinal RN, Cormack F, et al. Dissociable effects of acute SSRI (escitalopram) on executive, learning and emotional functions in healthy humans. Neuropsychopharmacology. 2018;43:2645–51. (PMID: 30305705622445110.1038/s41386-018-0229-z)
Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PDS, Price LH, et al. Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology. 1998;19:26–35. (PMID: 960857410.1016/S0893-133X(97)00198-X)
Zhang Z, Manson KF, Schiller D, Levy I. Impaired associative learning with food rewards in obese women. Curr Biol. 2014;24:1731–6. (PMID: 2504258810.1016/j.cub.2014.05.075)
Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54:1063–70. (PMID: 339786510.1037/0022-3514.54.6.1063)
Walker SC, Robbins TW, Roberts AC. Differential contributions of dopamine and serotonin to orbitofrontal cortex function in the marmoset. Cereb Cortex. 2009;19:889–98. (PMID: 1872369510.1093/cercor/bhn136)
Booij L, Van der Does AJW, Riedel WJ. Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatry. 2003;8:951–73. (PMID: 1464739410.1038/sj.mp.4001423)
Ruhé HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12:331–59. (PMID: 1738990210.1038/sj.mp.4001949)
Worbe Y, Savulich G, Voon V, Fernandez-Egea E, Robbins TW. Serotonin depletion induces ‘waiting impulsivity’ on the human four-choice serial reaction time task: cross-species translational significance. Neuropsychopharmacology. 2014;39:1519–26. (PMID: 24385133398855610.1038/npp.2013.351)
Raio CM, Hartley CA, Orederu TA, Li J, Phelps EA. Stress attenuates the flexible updating of aversive value. Proc Natl Acad Sci. 2017;114:11241–6. (PMID: 28973957565173710.1073/pnas.1702565114)
Hornung J. The neuroanatomy of the serotonergic system. In: Muller CP, Jacobs BL, editors. Handb. Behav. Neurobiol. Serotonin, vol. 21, 1st ed. London: Elsevier; 2010. p. 51–64.
Chamberlain SR, Menzies L, Hampshire A, Suckling J, Fineberg NA, del Campo N, et al. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science. 2008;321:421–2. (PMID: 1863580810.1126/science.1154433)
Vaidya AR, Fellows LK. Under construction: Ventral and lateral frontal lobe contributions to value-based decision-making and learning. F1000Research. 2020;9:1–8. (PMID: 10.12688/f1000research.21946.1)
Chudasama Y, Daniels TE, Gorrin DP, Rhodes SEV, Rudebeck PH, Murray EA. The role of the anterior cingulate cortex in choices based on reward value and reward contingency. Cereb Cortex. 2013;23:2884–98. (PMID: 2294453010.1093/cercor/bhs266)
LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84. (PMID: 1084506210.1146/annurev.neuro.23.1.155)
Terburg D, Morgan BE, Montoya ER, Hooge IT, Thornton HB, Hariri AR, et al. Hypervigilance for fear after basolateral amygdala damage in humans. Transl Psychiatry. 2012;2:10.
van Donkelaar EL, Blokland A, Ferrington L, Kelly PAT, Steinbusch HWM, Prickaerts J. Mechanism of acute tryptophan depletion: Is it only serotonin? Mol Psychiatry. 2011;16:695–713. (PMID: 2133975410.1038/mp.2011.9)
Young SN. Acute tryptophan depletion in humans: a review of theoretical, practical and ethical aspects. J Psychiatry Neurosci. 2013;38:294–305. (PMID: 23428157375611210.1503/jpn.120209)
Winstanley CA, Dalley JW, Theobald DEH, Robbins TW. Fractioning impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behaviour. Neuropsychopharmacology. 2004;29:1331–43. (PMID: 1505447510.1038/sj.npp.1300434)
Gershman SJ, Hartley CA. Individual differences in learning predict the return of fear. Learn Behav. 2015;43:243–50. (PMID: 2610052410.3758/s13420-015-0176-z)
Kähkönen S, Ahveninen J, Pennanen S, Liesivuori J, Ilmoniemi RJ, Jääskeläinen IP. Serotonin modulates early cortical auditory processing in healthy subjects. Evidence from MEG with acute tryptophan depletion. Neuropsychopharmacology. 2002;27:862–8. (PMID: 1243186010.1016/S0893-133X(02)00357-3)
Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. Orbitofrontal cortex as a cognitive map of task space. Neuron. 2014;81:267–79. (PMID: 24462094400186910.1016/j.neuron.2013.11.005)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; MC_PC_17213 United Kingdom MRC_ Medical Research Council; 104631/Z/14/Z United Kingdom WT_ Wellcome Trust; United Kingdom DH_ Department of Health
المشرفين على المادة: 333DO1RDJY (Serotonin)
تواريخ الأحداث: Date Created: 20210825 Date Completed: 20220314 Latest Revision: 20230206
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8873011
DOI: 10.1038/s41380-021-01240-9
PMID: 34429517
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5578
DOI:10.1038/s41380-021-01240-9