دورية أكاديمية

Human Fallopian Tube - Derived Mesenchymal Stem Cells Inhibit Experimental Autoimmune Encephalomyelitis by Suppressing Th1/Th17 Activation and Migration to Central Nervous System.

التفاصيل البيبلوغرافية
العنوان: Human Fallopian Tube - Derived Mesenchymal Stem Cells Inhibit Experimental Autoimmune Encephalomyelitis by Suppressing Th1/Th17 Activation and Migration to Central Nervous System.
المؤلفون: de Freitas CL; Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Polonio CM; Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Brandão WN; Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Rossato C; Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Zanluqui NG; Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.; Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., de Oliveira LG; Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., de Oliveira MG; Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Evangelista LP; Reproductive Medicine Division, Célula Mater Clinic, São Paulo, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Halpern S; Reproductive Medicine Division, Halpern Clinic, São Paulo, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Maluf M; Reproductive Medicine Division, CEERH Clinic, São Paulo, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Czresnia CE; Reproductive Medicine Division, Célula Mater Clinic, São Paulo, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Perin P; Reproductive Medicine Division, CEERH Clinic, São Paulo, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., de Almeida DC; Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil., Peron JPS; Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), Av. Prof. Lineu Prestes, 1730 Lab 232. Cidade Universitária, São Paulo, SP, CEP 05508-000, Brazil. jeanpierre@usp.br.; Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, Brazil. jeanpierre@usp.br.; Scientific Platform Pasteur-USP, University of São Paulo, São Paulo, Brazil. jeanpierre@usp.br.
المصدر: Stem cell reviews and reports [Stem Cell Rev Rep] 2022 Feb; Vol. 18 (2), pp. 609-625. Date of Electronic Publication: 2021 Aug 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Science+Business Media Country of Publication: United States NLM ID: 101752767 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2629-3277 (Electronic) Linking ISSN: 26293277 NLM ISO Abbreviation: Stem Cell Rev Rep Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : [New York, NY] : Springer Science+Business Media
Original Publication: [Totowa, N.J.] : Humana Press, [2009]-
مواضيع طبية MeSH: Encephalomyelitis, Autoimmune, Experimental*/therapy , Mesenchymal Stem Cells*, Adult ; Animals ; Central Nervous System ; Fallopian Tubes ; Female ; Humans ; Interleukin-10 ; Interleukin-4
مستخلص: Mesenchymal stem cells comprise a natural reservoir of undifferentiated cells within adult tissues. Given their self-renewal, multipotency, regenerative potential and immunomodulatory properties, MSCs have been reported as a promising cell therapy for the treatment of different diseases, including neurodegenerative and autoimmune diseases. In this study, we investigated the immunomodulatory properties of human tubal mesenchymal stem cells (htMSCs) using the EAE model. htMSCs were able to suppress dendritic cells activation downregulating antigen presentation-related molecules, such as MHCII, CD80 and CD86, while impairing IFN-γ and IL-17 and increasing IL-10 and IL-4 secretion. It further correlated with milder disease scores when compared to the control group due to fewer leukocytes infiltrating the CNS, specially Th1 and Th17 lymphocytes, associated with increased IL-10 secreting Tr1 cells. Conversely, microglia were less activated and infiltrating mononuclear cells secreted higher levels of IL-4 and IL-10 and expressed reduced chemokine receptors as CCR4, CCR6 and CCR8. qPCR of the spinal cords revealed upregulation of indoleamine-2,3-dioxygenase (IDO) and brain derived neurotrophic factor (BDNF). Taken together, here evidenced the potential of htMSCs as an alternative for the treatment of inflammatory, autoimmune or neurodegenerative diseases.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Horwitz, E. M., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells The International Society for Cellular Therapy position statement. Cytotherapy. https://doi.org/10.1080/14653240600855905. (PMID: 10.1080/1465324060085590517050248)
Weissman, I. L. (2000). Stem cells: Units of development, units of regeneration, and units in evolution. Cell. https://doi.org/10.1016/S0092-8674(00)81692-X. (PMID: 10.1016/S0092-8674(00)81692-X11007473)
Uccelli, A., Laroni, A., & Freedman, M. S. (2011). Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. The Lancet Neurology. https://doi.org/10.1016/S1474-4422(11)70121-1. (PMID: 10.1016/S1474-4422(11)70121-121683930)
Kim, D. S., Jang, I. K., Lee, M. W., Ko, Y. J., Lee, D.-H., Lee, J. W., Yoo, K. H., et al. (2018). Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-γ. eBioMedicine, 28, 261–273. https://doi.org/10.1016/j.ebiom.2018.01.002. (PMID: 10.1016/j.ebiom.2018.01.002293666275898027)
Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., Annunziato, F., et al. (2006). Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398. https://doi.org/10.1634/stemcells.2005-0008. (PMID: 10.1634/stemcells.2005-000816123384)
Boland, L., Burand, A. J., Brown, A. J., Boyt, D., Lira, V. A., & Ankrum, J. A. (2018). IFN-γ and TNF-α pre-licensing protects mesenchymal stromal cells from the pro-inflammatory effects of palmitate. Molecular Therapy, 26(3), 860–873. https://doi.org/10.1016/j.ymthe.2017.12.013. (PMID: 10.1016/j.ymthe.2017.12.01329352647)
Han, X., Yang, Q., Lin, L., Xu, C., Zheng, C., Chen, X., & Shi, Y. (2014). Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death & Differentiation, 21(11), 1758–1768. https://doi.org/10.1038/cdd.2014.85. (PMID: 10.1038/cdd.2014.85)
de Almeida, D. C., Bassi, Ê. J., Azevedo, H., Anderson, L., Origassa, C. S. T., Cenedeze, M. A., Câmara, N. O. S., et al. (2017). A regulatory miRNA–mRNA network is associated with tissue repair induced by mesenchymal stromal cells in acute kidney injury. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2016.00645. (PMID: 10.3389/fimmu.2016.00645293795035723008)
Noronha, N. C., Mizukami, A., Caliári-Oliveira, C., Cominal, J. G., Rocha, J. L. M., Covas, D. T., Malmegrim, K. C. R., et al. (2019). Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Research & Therapy, 10(1), 131. https://doi.org/10.1186/s13287-019-1224-y. (PMID: 10.1186/s13287-019-1224-y)
Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regenerative Medicine, 4(1), 22. https://doi.org/10.1038/s41536-019-0083-6. (PMID: 10.1038/s41536-019-0083-6318150016889290)
Jiang, X.-X., Zhang, Y., Liu, B., Zhang, S.-X., Wu, Y., Yu, X.-D., & Mao, N. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105(10), 4120–4126. https://doi.org/10.1182/blood-2004-02-0586. (PMID: 10.1182/blood-2004-02-058615692068)
Lu, X., Liu, T., Gu, L., Huang, C., Zhu, H., Meng, W., Liu, Y., et al. (2009). Immunomodulatory effects of mesenchymal stem cells involved in favoring type 2 T cell subsets. Transplant Immunology, 22(1–2), 55–61. https://doi.org/10.1016/j.trim.2009.08.002. (PMID: 10.1016/j.trim.2009.08.00219695330)
Ghannam, S., Pène, J., Torcy-Moquet, G., Jorgensen, C., & Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a t regulatory cell phenotype. The Journal of Immunology, 185(1), 302–312. https://doi.org/10.4049/jimmunol.0902007. (PMID: 10.4049/jimmunol.090200720511548)
Saeedi, P., Halabian, R., & Imani Fooladi, A. A. (2019). A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investigation, 6, 34–34. https://doi.org/10.21037/sci.2019.08.11. (PMID: 10.21037/sci.2019.08.11316204816789202)
Jäger, A., Dardalhon, V., Sobel, R. A., Bettelli, E., & Kuchroo, V. K. (2009). Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. The Journal of Immunology, 183(11), 7169–7177. https://doi.org/10.4049/jimmunol.0901906. (PMID: 10.4049/jimmunol.090190619890056)
Dendrou, C. A., Fugger, L., & Friese, M. A. (2015). Immunopathology of multiple sclerosis. Nature Reviews Immunology, 15(9), 545–558. https://doi.org/10.1038/nri3871. (PMID: 10.1038/nri387126250739)
Leyendecker, A., Jr., Pinheiro, C. C. G., Amano, M. T., & Bueno, D. F. (2018). The use of human mesenchymal stem cells as therapeutic agents for the in vivo treatment of immune-related diseases: A systematic review. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2018.02056. (PMID: 10.3389/fimmu.2018.0205630254638)
Donders, R., Vanheusden, M., Bogie, J. F. J., Ravanidis, S., Thewissen, K., Stinissen, P., Hellings, N., et al. (2015). Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplantation, 24(10), 2077–2098. https://doi.org/10.3727/096368914X685104. (PMID: 10.3727/096368914X68510425310756)
Rossato, C., Brandão, W. N., Castro, S. B. R., de Almeida, D. C., Maranduba, C. M. C., Camara, N. O. S., Silva, F. S., et al. (2017). Stem cells from human-exfoliated deciduous teeth reduce tissue-infiltrating inflammatory cells improving clinical signs in experimental autoimmune encephalomyelitis. Biologicals, 49, 62–68. https://doi.org/10.1016/j.biologicals.2017.06.007. (PMID: 10.1016/j.biologicals.2017.06.00728666719)
Shimojima, C., Takeuchi, H., Jin, S., Parajuli, B., Hattori, H., Suzumura, A., Yamamoto, A., et al. (2016). Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. The Journal of Immunology, 196(10), 4164–4171. https://doi.org/10.4049/jimmunol.1501457. (PMID: 10.4049/jimmunol.150145727053763)
Shu, J., He, X., Li, H., Liu, X., Qiu, X., Zhou, T., Huang, X., et al. (2018). The beneficial effect of human amnion mesenchymal cells in inhibition of inflammation and induction of neuronal repair in EAE mice. Journal of Immunology Research, 2018, 1–10. https://doi.org/10.1155/2018/5083797. (PMID: 10.1155/2018/5083797)
Peron, J. P. S., Jazedje, T., Brandão, W. N., Perin, P. M., Maluf, M., Evangelista, L. P., Rizzo, L. V., et al. (2012). Human endometrial-derived mesenchymal stem cells suppress inflammation in the central nervous system of EAE mice. Stem Cell Reviews and Reports, 8(3), 940–952. https://doi.org/10.1007/s12015-011-9338-3. (PMID: 10.1007/s12015-011-9338-322180029)
Lyons, R. A., Saridogan, E., & Djahanbakhch, O. (2006). The reproductive significance of human Fallopian tube cilia. Human Reproduction Update, 12(4), 363–372. https://doi.org/10.1093/humupd/dml012. (PMID: 10.1093/humupd/dml01216565155)
Jazedje, T., Perin, P. M., Czeresnia, C. E., Maluf, M., Halpern, S., Secco, M., Zatz, M., et al. (2009). Human fallopian tube: A new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. Journal of Translational Medicine. https://doi.org/10.1186/1479-5876-7-46. (PMID: 10.1186/1479-5876-7-46195387122714040)
Peron, J. P. S., de Brito, A. A., Pelatti, M., Brandão, W. N., Vitoretti, L. B., Greiffo, F. R., Ligeiro de Oliveira, A. P., et al. (2015). Human tubal-derived mesenchymal stromal cells associated with low level laser therapy significantly reduces cigarette smoke–induced COPD in C57BL/6 mice. PLoS ONE, 10(8), e0136942. https://doi.org/10.1371/journal.pone.0136942. (PMID: 10.1371/journal.pone.0136942263229814554986)
ManganeliPolonio, C., Longo de Freitas, C., Garcia de Oliveira, M., Rossato, C., NogueiraBrandão, W., GhabdanZanluqui, N., Schatzmann Peron, J. P., et al. (2021). Murine endometrial-derived mesenchymal stem cells suppress experimental autoimmune encephalomyelitis depending on indoleamine-2,3-dioxygenase expression. Clinical Science, 135(9), 1065–1082. https://doi.org/10.1042/CS20201544. (PMID: 10.1042/CS20201544)
Klüver, H., & Barrera, E. (1953). A method for the combined staining of cells and fibers in the nervous system. Journal of Neuropathology and Experimental Neurology. https://doi.org/10.1097/00005072-195312040-00008. (PMID: 10.1097/00005072-195312040-0000813097193)
Martin, I., Galipeau, J., Kessler, C., Le Blanc, K., & Dazzi, F. (2019). Challenges for mesenchymal stromal cell therapies. Science Translational Medicine, 11(480), eaat2189. https://doi.org/10.1126/scitranslmed.aat2189. (PMID: 10.1126/scitranslmed.aat218930787168)
Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology. https://doi.org/10.1038/nri2395. (PMID: 10.1038/nri239519172693)
DelaRosa, O., Dalemans, W., & Lombardo, E. (2012). Mesenchymal stem cells as therapeutic agents of inflammatory and autoimmune diseases. Current Opinion in Biotechnology, 23(6), 978–983. https://doi.org/10.1016/j.copbio.2012.05.005. (PMID: 10.1016/j.copbio.2012.05.00522682584)
Wang, Y., Chen, X., Cao, W., & Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nature Immunology. https://doi.org/10.1038/ni.3002. (PMID: 10.1038/ni.3002255016314445969)
Liu, R., Zhang, Z., Lu, Z., Borlongan, C., Pan, J., Chen, J., Xu, Y., et al. (2013). Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells and Development, 22(7), 1053–1062. https://doi.org/10.1089/scd.2012.0463. (PMID: 10.1089/scd.2012.046323140594)
Shapira, I., Fainstein, N., Tsirlin, M., Stav, I., Volinsky, E., Moresi, C., Gorodetsky, R., et al. (2017). Placental stromal cell therapy for experimental autoimmune encephalomyelitis: The role of route of cell delivery. Stem Cells Translational Medicine, 6(4), 1286–1294. https://doi.org/10.5966/sctm.2015-0363. (PMID: 10.5966/sctm.2015-036328371563)
Shalaby, S. M., Sabbah, N. A., Saber, T., & Abdel Hamid, R. A. (2016). Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life, 68(2), 106–115. https://doi.org/10.1002/iub.1469. (PMID: 10.1002/iub.146926757144)
Bravo, B., Gallego, M. I., Flores, A. I., Bornstein, R., Puente-Bedia, A., Hernández, J., Ballester, S., et al. (2016). Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis. Stem Cell Research & Therapy, 7(1), 43. https://doi.org/10.1186/s13287-016-0304-5. (PMID: 10.1186/s13287-016-0304-5)
Torkaman, M., Ghollasi, M., Mohammadnia-Afrouzi, M., Salimi, A., & Amari, A. (2017). The effect of transplanted human Wharton’s jelly mesenchymal stem cells treated with IFN-γ on experimental autoimmune encephalomyelitis mice. Cellular Immunology, 311, 1–12. https://doi.org/10.1016/j.cellimm.2016.09.012. (PMID: 10.1016/j.cellimm.2016.09.01227697286)
Friese, M. A., Montalban, X., Willcox, N., Bell, J. I., Martin, R., & Fugger, L. (2006). The value of animal models for drug development in multiple sclerosis. Brain. https://doi.org/10.1093/brain/awl083. (PMID: 10.1093/brain/awl08316891318)
Dardalhon, V., Korn, T., Kuchroo, V. K., & Anderson, A. C. (2008). Role of Th1 and Th17 cells in organ-specific autoimmunity. Journal of Autoimmunity, 31(3), 252–256. https://doi.org/10.1016/j.jaut.2008.04.017. (PMID: 10.1016/j.jaut.2008.04.017185026103178062)
Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R., & Fibbe, W. E. (2006). Mesenchymal stem cells inhibit generation and function of both CD34 + -derived and monocyte-derived dendritic cells. The Journal of Immunology, 177(4), 2080–2087. https://doi.org/10.4049/jimmunol.177.4.2080. (PMID: 10.4049/jimmunol.177.4.208016887966)
Zhang, W., Ge, W., Li, C., You, S., Liao, L., Han, Q., Zhao, R. C. H., et al. (2004). Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells and Development, 13(3), 263–271. https://doi.org/10.1089/154732804323099190. (PMID: 10.1089/15473280432309919015186722)
Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Uccelli, A., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106(5), 1755–1761. https://doi.org/10.1182/blood-2005-04-1496. (PMID: 10.1182/blood-2005-04-149615905186)
Consentius, C., Akyüz, L., Schmidt-Lucke, J. A., Tschöpe, C., Pinzur, L., Ofir, R., Juelke, K., et al. (2015). Mesenchymal stromal cells prevent allostimulation in vivo and control checkpoints of Th1 priming: Migration of human DC to lymph nodes and NK cell activation. Stem Cells, 33(10), 3087–3099. https://doi.org/10.1002/stem.2104. (PMID: 10.1002/stem.210426184374)
Bai, L., Lennon, D. P., Eaton, V., Maier, K., Caplan, A. I., Miller, S. D., & Miller, R. H. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 57(11), 1192–1203. https://doi.org/10.1002/glia.20841. (PMID: 10.1002/glia.20841191913362706928)
Wang, X., Lazorchak, A. S., Song, L., Li, E., Zhang, Z., Jiang, B., & Xu, R.-H. (2016). Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage. Stem Cells, 34(2), 380–391. https://doi.org/10.1002/stem.2242. (PMID: 10.1002/stem.224226523849)
Acharya, S., Timilshina, M., Jiang, L., Neupane, S., Choi, D.-Y., Park, S. W., Chang, J.-H., et al. (2018). Amelioration of experimental autoimmune encephalomyelitis and DSS induced colitis by NTG-A-009 through the inhibition of Th1 and Th17 cells differentiation. Scientific Reports, 8(1), 7799. https://doi.org/10.1038/s41598-018-26088-y. (PMID: 10.1038/s41598-018-26088-y297738135958108)
Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., Prat, A., et al. (2007). Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nature Medicine, 13(10), 1173–1175. https://doi.org/10.1038/nm1651. (PMID: 10.1038/nm1651178282725114125)
Prajeeth, C. K., Kronisch, J., Khorooshi, R., Knier, B., Toft-Hansen, H., Gudi, V., Stangel, M., et al. (2017). Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. Journal of Neuroinflammation, 14(1), 204. https://doi.org/10.1186/s12974-017-0978-3. (PMID: 10.1186/s12974-017-0978-3290372465644084)
Hou, Y., Ryu, C., Park, K., Kim, S., Jeong, C., & Jeun, S.-S. (2013). Effective combination of human bone marrow mesenchymal stem cells and minocycline in experimental autoimmune encephalomyelitis mice. Stem Cell Research & Therapy, 4(4), 77. https://doi.org/10.1186/scrt228. (PMID: 10.1186/scrt228)
de Oliveira, D. M., de Oliveira, E. M. L., Ferrari, M. F. R., Semedo, P., Hiyane, M. I., Cenedeze, M. A., Peron, J. P. S., et al. (2015). Simvastatin ameliorates experimental autoimmune encephalomyelitis by inhibiting Th1/Th17 response and cellular infiltration. Inflammopharmacology, 23(6), 343–354. https://doi.org/10.1007/s10787-015-0252-1. (PMID: 10.1007/s10787-015-0252-126559850)
Braga, T. T., Brandao, W. N., Azevedo, H., Terra, F. F., Melo, A. C. L., Pereira, F. V., Camara, N. O. S., et al. (2019). NLRP3 gain-of-function in CD4+ T lymphocytes ameliorates experimental autoimmune encephalomyelitis. Clinical Science, 133(17), 1901–1916. https://doi.org/10.1042/CS20190506. (PMID: 10.1042/CS2019050631471462)
Uccelli, A., Moretta, L., & Pistoia, V. (2006). Immunoregulatory function of mesenchymal stem cells. European Journal of Immunology, 36(10), 2566–2573. https://doi.org/10.1002/eji.200636416. (PMID: 10.1002/eji.20063641617013987)
Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Gianni, A. M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843. https://doi.org/10.1182/blood.V99.10.3838. (PMID: 10.1182/blood.V99.10.383811986244)
Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24(1), 74–85. https://doi.org/10.1634/stemcells.2004-0359. (PMID: 10.1634/stemcells.2004-035916099998)
Meisel, R., Zibert, A., Laryea, M., Göbel, U., Däubener, W., & Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase–mediated tryptophan degradation. Blood, 103(12), 4619–4621. https://doi.org/10.1182/blood-2003-11-3909. (PMID: 10.1182/blood-2003-11-390915001472)
Ankrum, J. A., Ong, J. F., & Karp, J. M. (2014). Mesenchymal stem cells: Immune evasive, not immune privileged. Nature Biotechnology, 32(3), 252–260. https://doi.org/10.1038/nbt.2816. (PMID: 10.1038/nbt.2816245615564320647)
DelaRosa, O., Lombardo, E., Beraza, A., Mancheño-Corvo, P., Ramirez, C., Menta, R., Büscher, D., et al. (2009). Requirement of IFN-γ–mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose–derived stem cells. Tissue Engineering Part A, 15(10), 2795–2806. https://doi.org/10.1089/ten.tea.2008.0630. (PMID: 10.1089/ten.tea.2008.063019231921)
Zemelko, V. I., Kozhukharova, I. V., Kovaleva, Z. V., Domnina, A. P., Pugovkina, N. A., Fridlianskaia, I. I., Nikolskiĭ, N. N., et al. (2014). BDNF secretion in human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue. Tsitologiia, 56(3), 204–11.
Colpo, G. D., Ascoli, B. M., Wollenhaupt-Aguiar, B., Pfaffenseller, B., Silva, E. G., Cirne-Lima, E. O., Rosa, A. R., et al. (2015). Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. Anais da Academia Brasileira de Ciências, 87(2 suppl), 1435–1449. https://doi.org/10.1590/0001-3765201520140619. (PMID: 10.1590/0001-376520152014061926247151)
Frota, E. R. C., Rodrigues, D. H., Donadi, E. A., Brum, D. G., Maciel, D. R. K., & Teixeira, A. L. (2009). Increased plasma levels of brain derived neurotrophic factor (BDNF) after multiple sclerosis relapse. Neuroscience Letters, 460(2), 130–132. https://doi.org/10.1016/j.neulet.2009.05.057. (PMID: 10.1016/j.neulet.2009.05.05719477225)
Ben-Zwi, M., Petrou, P., Halimi, M., Karussis, D., & Kassis, I. (2019). Neuralized mesenchymal stem cells (NMSC) exhibit phenotypical, and biological evidence of neuronal transdifferentiation and suppress EAE more effectively than unmodified MSC. Immunology Letters, 212, 6–13. https://doi.org/10.1016/j.imlet.2019.05.009. (PMID: 10.1016/j.imlet.2019.05.00931154052)
Zhang, J., Li, Y., Chen, J., Cui, Y., Lu, M., Elias, S. B., Chopp, M., et al. (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Experimental Neurology, 195(1), 16–26. https://doi.org/10.1016/j.expneurol.2005.03.018. (PMID: 10.1016/j.expneurol.2005.03.01815904921)
Dhingra, S., Li, P., Huang, X.-P., Guo, J., Wu, J., Mihic, A., Li, R.-K., et al. (2013). Preserving prostaglandin E2 level prevents rejection of implanted allogeneic mesenchymal stem cells and restores postinfarction ventricular function. Circulation, 128(11_suppl_1), S69–S78. https://doi.org/10.1161/CIRCULATIONAHA.112.000324. (PMID: 10.1161/CIRCULATIONAHA.112.00032424030423)
Dhaiban, S., Al-Ani, M., Elemam, N. M., & Maghazachi, A. A. (2020). Targeting chemokines and chemokine receptors in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Inflammation Research, 13, 619–633. https://doi.org/10.2147/JIR.S270872. (PMID: 10.2147/JIR.S270872330615277532903)
Anderson, P., Gonzalez-Rey, E., O’Valle, F., Martin, F., Oliver, F. J., & Delgado, M. (2017). Allogeneic adipose-derived mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by regulating self-reactive T cell responses and dendritic cell function. Stem Cells International, 2017, 1–15. (PMID: 10.1155/2017/2389753)
فهرسة مساهمة: Keywords: Dendritic cells; EAE; Immunomodulation; Lymphocytes; Mesenchymal stem cell
المشرفين على المادة: 130068-27-8 (Interleukin-10)
207137-56-2 (Interleukin-4)
تواريخ الأحداث: Date Created: 20210828 Date Completed: 20220421 Latest Revision: 20220421
رمز التحديث: 20221213
DOI: 10.1007/s12015-021-10226-7
PMID: 34453694
قاعدة البيانات: MEDLINE
الوصف
تدمد:2629-3277
DOI:10.1007/s12015-021-10226-7