دورية أكاديمية

Receiver phase alignment using fitted SVD derived sensitivities from routine prescans.

التفاصيل البيبلوغرافية
العنوان: Receiver phase alignment using fitted SVD derived sensitivities from routine prescans.
المؤلفون: Stanley OW; Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada.; Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada., Menon RS; Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada.; Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada., Klassen LM; Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada.; Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.
المصدر: PloS one [PLoS One] 2021 Aug 30; Vol. 16 (8), pp. e0256700. Date of Electronic Publication: 2021 Aug 30 (Print Publication: 2021).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science
مواضيع طبية MeSH: Algorithms* , Magnetic Resonance Imaging*, Humans ; Image Processing, Computer-Assisted ; Motion ; Perceptual Masking ; Signal-To-Noise Ratio
مستخلص: Magnetic resonance imaging radio frequency arrays are composed of multiple receive coils that have their signals combined to form an image. Combination requires an estimate of the radio frequency coil sensitivities to align signal phases and prevent destructive interference. At lower fields this can be accomplished using a uniform physical reference coil. However, at higher fields, uniform volume coils are lacking and, when available, suffer from regions of low receive sensitivity that result in poor sensitivity estimation and combination. Several approaches exist that do not require a physical reference coil but require manual intervention, specific prescans, or must be completed post-acquisition. This makes these methods impractical for large multi-volume datasets such as those collected for novel types of functional MRI or quantitative susceptibility mapping, where magnitude and phase are important. This pilot study proposes a fitted SVD method which utilizes existing combination methods to create a phase sensitive combination method targeted at large multi-volume datasets. This method uses any multi-image prescan to calculate the relative receive sensitivities using voxel-wise singular value decomposition. These relative sensitivities are fitted to the solid harmonics using an iterative least squares fitting algorithm. Fits of the relative sensitivities are used to align the phases of the receive coils and improve combination in subsequent acquisitions during the imaging session. This method is compared against existing approaches in the human brain at 7 Tesla by examining the combined data for the presence of singularities and changes in phase signal-to-noise ratio. Two additional applications of the method are also explored, using the fitted SVD method in an asymmetrical coil and in a case with subject motion. The fitted SVD method produces singularity-free images and recovers between 95-100% of the phase signal-to-noise ratio depending on the prescan data resolution. Using solid harmonic fitting to interpolate singular value decomposition derived receive sensitivities from existing prescans allows the fitted SVD method to be used on all acquisitions within a session without increasing exam duration. Our fitted SVD method is able to combine imaging datasets accurately without supervision during online reconstruction.
Competing Interests: The authors have declared that no competing interests exist.
References: Magn Reson Med. 2017 Jan;77(1):318-327. (PMID: 26712454)
Magn Reson Med. 2007 Jun;57(6):1131-9. (PMID: 17534913)
Appl Opt. 2007 Sep 10;46(26):6623-35. (PMID: 17846656)
Magn Reson Med. 2010 May;63(5):1144-53. (PMID: 20432285)
Magn Reson Med. 2014 Aug;72(2):563-9. (PMID: 24006172)
Magn Reson Med. 2007 Jan;57(1):192-200. (PMID: 17191242)
Magn Reson Med. 2014 Jan;71(1):394-401. (PMID: 23408494)
Neuroimage. 2012 Aug 15;62(2):782-90. (PMID: 21979382)
Magn Reson Med. 1990 Nov;16(2):192-225. (PMID: 2266841)
NMR Biomed. 2017 Apr;30(4):. (PMID: 27259117)
Magn Reson Med. 2000 May;43(5):682-90. (PMID: 10800033)
NMR Biomed. 2017 Apr;30(4):. (PMID: 27619999)
Magn Reson Med. 2018 Jan;79(1):97-107. (PMID: 28247561)
Neuroimage. 2021 Feb 15;227:117631. (PMID: 33316391)
Neuroimage. 2014 Oct 15;100:112-24. (PMID: 24945672)
Neuroimage. 2014 Jan 1;84:320-41. (PMID: 23994314)
Magn Reson Imaging. 2015 Jan;33(1):1-25. (PMID: 25267705)
Magn Reson Med. 2014 Mar;71(3):990-1001. (PMID: 23649942)
Magn Reson Med. 2004 Sep;52(3):612-8. (PMID: 15334582)
Neuroimage. 2005 Jan 15;24(2):603-6. (PMID: 15627605)
Magn Reson Med. 1996 Nov;36(5):800-3. (PMID: 8916033)
NMR Biomed. 2021 Mar;34(3):e4457. (PMID: 33305466)
Magn Reson Med. 2008 Oct;60(4):1003-9. (PMID: 18816834)
J Magn Reson Imaging. 2008 Feb;27(2):376-90. (PMID: 18219673)
Magn Reson Med. 2020 May;83(5):1810-1824. (PMID: 31605554)
Magn Reson Med. 1994 Sep;32(3):330-4. (PMID: 7984065)
Magn Reson Med. 2018 Jun;79(6):2996-3006. (PMID: 29034511)
Magn Reson Med. 2002 Jan;47(1):1-9. (PMID: 11754436)
NMR Biomed. 2017 Aug;30(8):. (PMID: 28543640)
Magn Reson Med. 2012 Oct;68(4):1109-16. (PMID: 22213531)
معلومات مُعتمدة: 148453 Canada CIHR
تواريخ الأحداث: Date Created: 20210830 Date Completed: 20211207 Latest Revision: 20211214
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8404984
DOI: 10.1371/journal.pone.0256700
PMID: 34460849
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-6203
DOI:10.1371/journal.pone.0256700