دورية أكاديمية

Camelina sativa phosphatidylcholine:diacylglycerol cholinephosphotransferase-catalyzed interconversion does not discriminate between substrates.

التفاصيل البيبلوغرافية
العنوان: Camelina sativa phosphatidylcholine:diacylglycerol cholinephosphotransferase-catalyzed interconversion does not discriminate between substrates.
المؤلفون: Demski K; Department of Plant Breeding, Swedish University of Agriculture Science, Alnarp, Sweden., Jeppson S; Department of Plant Breeding, Swedish University of Agriculture Science, Alnarp, Sweden., Stymne S; Department of Plant Breeding, Swedish University of Agriculture Science, Alnarp, Sweden., Lager I; Department of Plant Breeding, Swedish University of Agriculture Science, Alnarp, Sweden.
المصدر: Lipids [Lipids] 2021 Nov; Vol. 56 (6), pp. 591-602. Date of Electronic Publication: 2021 Aug 31.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Subscription Services, Inc Country of Publication: United States NLM ID: 0060450 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1558-9307 (Electronic) Linking ISSN: 00244201 NLM ISO Abbreviation: Lipids Subsets: MEDLINE
أسماء مطبوعة: Publication: 2018- : Hoboken, NJ : Wiley Subscription Services, Inc.
Original Publication: Chicago, American Oil Chemists' Society.
مواضيع طبية MeSH: Brassicaceae* , Diacylglycerol Cholinephosphotransferase*, Catalysis ; Fatty Acids ; Phosphatidylcholines ; Seeds ; Triglycerides
مستخلص: Phosphatidylcholine:diacylglycerol cholinephosphotransferases (PDCT) regulate the fatty acid composition of seed oil (triacylglycerol, TAG) by interconversion of diacylglycerols (DAG) and phosphatidylcholine (PtdCho). PtdCho is the substrate for polyunsaturated fatty acid biosynthesis, as well as for a number of unusual fatty acids. By the action of PDCT, these fatty acids can be transferred into the DAG pool to be utilized in TAG biosynthesis by the action of acyl-CoA:DAG and phospholipid:diacylglycerol acyltransferases. Despite its importance in regulating seed oil composition, biochemical characterization of PDCT enzymes has been lacking. We characterized Camelina sativa PDCT in microsomal preparations of a yeast strain expressing Camelina PDCT and lacking the capacity of producing TAG. Camelina PDCT was specific for PtdCho and the sn-1,2 enantiomer of DAG and could not utilize ceramide. The interconversion reaches equilibrium within 15 min of incubation, indicating that only distinct pools of DAG and PtdCho were available for exchange. However, the pool sizes of DAG and PtdCho involved in the exchange were not fixed but increased with the amount of exogenous DAG or PtdCho added. Camelina PDCT showed about the same selectivity for di-oleoyl, di-linoleoyl, and di-linolenoyl species in both PtdCho and DAG substrates, suggesting that no unidirectional transfer of particular unsaturated substrates occurred. Camelina PDCT had a good activity with erucoyl-DAG as a substrate despite low erucic acid levels in PtdCho in plant species accumulating a high amount of this fatty acid in the seed oil.
(© 2021 The Authors. Lipids published by Wiley Periodicals LLC on behalf of AOCS.)
References: Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Biochem J. 1991;280(Pt 2):507-14.
Bai S, Wallis JG, Denolf P, Engelen S, Bengtsson JD, Van Thournout M, et al. The biochemistry of headgroup exchange during triacylglycerol synthesis in canola. Plant J. 2020;103:83-94.
Bansal S, Durrett TP. Camelina sativa: an ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie. 2016;120:9-16.
Bates PD, Browse J. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci. 2012;3:147.
Bates PD, Durrett TP, Ohlrogge JB, Pollard M. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol. 2009;150:55-72.
Bates PD, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol. 2013;16:358-64.
Berti M, Gesch R, Eynck C, Anderson J, Cermak S. Camelina uses, genetics, genomics, production, and management. Ind Crop Prod. 2016;94:690-710.
Bligh EG, Dyer WJ. A rapid method of Total lipid extraction and purification. Can J Biochem Phys. 1959;37:911-7.
Dahlqvist A, Ståhl U, Lenman M, Banas A, Lee M, Sandager L, et al. Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A. 2000;97:6487-92.
van Deenen I, de Haas GH. The substrate specificity of phospholipase a. Biochim Biophys Acta. 1963;70:538-53.
Epand RM, Shulga YV, Timmons HC, Perri AL, Belani JD, Perinpanathan K, et al. Substrate chirality and specificity of diacylglycerol kinases and the multisubstrate lipid kinase. Biochemistry. 2007;46:14225-31.
Goracci G, Francescangeli E, Horrocks LA, Porcellati G. The reverse reaction of cholinephosphotransferase in rat brain microsomes. A new pathway for degradation of phosphatidylcholine. Biochim Biophys Acta. 1981;664:373-9.
Guan R, Lager I, Li X, Stymne S, Zhu LH. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica. Plant Biotechnol J. 2014;12:193-203.
Hu Z, Ren Z, Lu C. The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Plant Physiol. 2012;158:1944-54.
Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC. Identification of a family of animal sphingomyelin synthases. EMBO J. 2004;23:33-44.
Jarvis BA, Romsdahl TB, McGinn MG, Nazarenus TJ, Cahoon EB, Chapman KD, et al. CRISPR/Cas9-induced fad2 and rod1 mutations stacked with fae1 confer high oleic acid seed oil in pennycress (Thlaspi arvense L.). Front Plant Sci. 2021;12:652319.
Jeppson S, Mattisson H, Demski K, Lager I. A predicted transmembrane region in plant diacylglycerol acyltransferase 2 regulates specificity toward very-long-chain acyl-CoAs. J Biol Chem. 2020;295:15398-406.
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:275-82.
Kanda P, Wells MA. Facile acylation of glycerophosphocholine catalyzed by trifluoroacetic anhydride. J Lipid Res. 1981;22:877-9.
Kennedy EP. Biosynthesis of complex lipids. Fed Proc. 1961;20:934-40.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547-9.
Lager I, Yilmaz JL, Zhou XR, Jasieniecka K, Kazachkov M, Wang P, et al. Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions. J Biol Chem. 2013;288:36902-14.
Lager I, Jeppson S, Gippert AL, Feussner I, Stymne S, Marmon S. Acyltransferases regulate oil quality in Camelina sativa through both acyl donor and acyl acceptor specificities. Front Plant Sci. 2020;11:1144.
Lemieux B, Miquel M, Somerville C, Browse J. Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet. 1990;80:234-40.
Lin JT, Turner C, Liao LP, McKeon TA. Identification and quantification of the molecular species of acylglycerols in castor oil by HPLC using ELSD. J Liq Chromatogr R T. 2003;26:773-80.
Lu C, Kang J. Generation of transgenic plants of a potential oilseed crop Camelina sativa by agrobacterium-mediated transformation. Plant Cell Rep. 2008;27:273-8.
Lu C, Xin Z, Ren Z, Miquel M, Browse J. An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci U S A. 2009;106:18837-42.
Piotto S, Sessa L, Iannelli P, Concilio S. Computational study on human sphingomyelin synthase 1 (hSMS1). Biochim Biophys Acta Biomembr. 2017;1859:1517-25.
Regmi A, Shockey J, Kotapati HK, Bates PD. Oil-producing Metabolons containing DGAT1 use separate substrate pools from those containing DGAT2 or PDAT. Plant Physiol. 2020;184:720-37.
Rodriguez-Rodriguez MF, Sanchez-Garcia A, Salas JJ, Garces R, Martinez-Force E. Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind Crop Prod. 2013;50:673-9.
Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, et al. Storage lipid synthesis is non-essential in yeast. J Biol Chem. 2002;277:6478-82.
Slack CR, Campbell LC, Browse JA, Roughan PG. Some evidence for the reversibility of the Cholinephosphotransferase-catalysed reaction in developing linseed cotyledons Invivo. Biochim Biophys Acta. 1983;754:10-20.
Slack CR, Roughan PG, Browse JA, Gardiner SE. Some properties of Cholinephosphotransferase from developing safflower cotyledons. Biochim Biophys Acta. 1985;833:438-48.
Stobart AK, Stymne S. The interconversion of diacylglycerol and phosphatidylcholine during triacylglycerol production in microsomal preparations of developing cotyledons of safflower (Carthamus tinctorius L.). Biochem J. 1985;232:217-21.
فهرسة مساهمة: Keywords: Camelina; PDCT; acyltransferase; diacylglycerol; phosphatidylcholine; seed oil
المشرفين على المادة: 0 (Fatty Acids)
0 (Phosphatidylcholines)
0 (Triglycerides)
EC 2.7.8.2 (Diacylglycerol Cholinephosphotransferase)
تواريخ الأحداث: Date Created: 20210831 Date Completed: 20220127 Latest Revision: 20220127
رمز التحديث: 20221213
DOI: 10.1002/lipd.12322
PMID: 34463366
قاعدة البيانات: MEDLINE
الوصف
تدمد:1558-9307
DOI:10.1002/lipd.12322