دورية أكاديمية

Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone.

التفاصيل البيبلوغرافية
العنوان: Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone.
المؤلفون: Reilly DK; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.; Tufts University, Medford, MA, USA., McGlame EJ; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.; AbbVie Foundational Neuroscience Center, Cambridge, MA, USA., Vandewyer E; Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium., Robidoux AN; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA., Muirhead CS; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA., Northcott HT; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.; Optum, Hartford, CT, USA., Joyce W; Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, USA., Alkema MJ; Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, USA., Gegear RJ; Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, USA., Beets I; Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium., Srinivasan J; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA. jsrinivasan@wpi.edu.
المصدر: Communications biology [Commun Biol] 2021 Aug 31; Vol. 4 (1), pp. 1018. Date of Electronic Publication: 2021 Aug 31.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group UK Country of Publication: England NLM ID: 101719179 Publication Model: Electronic Cited Medium: Internet ISSN: 2399-3642 (Electronic) Linking ISSN: 23993642 NLM ISO Abbreviation: Commun Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, United Kingdom : Nature Publishing Group UK, [2018]-
مواضيع طبية MeSH: Locomotion*/drug effects, Caenorhabditis elegans/*physiology , Hermaphroditic Organisms/*physiology , Receptors, Neuropeptide/*genetics, Animals ; Caenorhabditis elegans/genetics ; Caenorhabditis elegans Proteins ; Carrier Proteins ; Hermaphroditic Organisms/genetics ; Male ; Receptors, Neuropeptide/metabolism
مستخلص: Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.
(© 2021. The Author(s).)
References: García, L. R. & Portman, D. S. Neural circuits for sexually dimorphic and sexually divergent behaviors in Caenorhabditis elegans. Curr. Opin. Neurobiol. 38, 46–52 (2016). (PMID: 26929998492128310.1016/j.conb.2016.02.002)
Li, Y. & Dulac, C. Neural coding of sex-specific social information in the mouse brain. Curr. Opin. Neurobiol. 53, 120–130 (2018). (PMID: 3005982010.1016/j.conb.2018.07.005)
Yang, T. & Shah, N. M. Molecular and neural control of sexually dimorphic social behaviors. Curr. Opin. Neurobiol. 38, 89–95 (2016). (PMID: 27162162498561410.1016/j.conb.2016.04.015)
Chute, C. D. & Srinivasan, J. Chemical mating cues in C. elegans. Semin. Cell Dev. Biol. 33, 18–24 (2014). (PMID: 2497733410.1016/j.semcdb.2014.06.002)
Kaba, H., Fujita, H., Agatsuma, T. & Matsunami, H. Maternally inherited peptides as strain-specific chemosignals. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2014712117 (2020).
McGrath, P. T. & Ruvinsky, I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. Curr. Opin. Syst. Biol. 13, 23–30 (2019). (PMID: 3098489010.1016/j.coisb.2018.08.012)
Silva, L. & Antunes, A. Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Annu. Rev. Animal Biosci. 5, 353–370 (2017). (PMID: 10.1146/annurev-animal-022516-022801)
Smith, D. P. Odor and pheromone detection in Drosophila melanogaster. Pflugers Arch. 454, 749–758 (2007). (PMID: 1720535510.1007/s00424-006-0190-2)
Flavell, S. W., Raizen, D. M. & You, Y.-J. Behavioral states. Genetics 216, 315–332 (2020). (PMID: 33023930753685910.1534/genetics.120.303539)
Ghosh, D. D. et al. Neural architecture of hunger-dependent multisensory decision making in C. elegans. Neuron 92, 1049–1062 (2016). (PMID: 27866800514751610.1016/j.neuron.2016.10.030)
Chute, C. D. et al. Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nat. Commun. 10, 3186 (2019). (PMID: 31320626663937410.1038/s41467-019-11240-7)
Barr, M. M., García, L. R. & Portman, D. S. Sexual dimorphism and sex differences in Caenorhabditis elegans neuronal development and behavior. Genetics 208, 909–935 (2018). (PMID: 29487147584434110.1534/genetics.117.300294)
Virk, B. et al. Folate acts in E. coli to accelerate C. elegans aging independently of bacterial siosynthesis. Cell Rep. 14, 1611–1620 (2016). (PMID: 26876180476767810.1016/j.celrep.2016.01.051)
Narayan, A. et al. Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, E1392–E1401 (2016). (PMID: 26903633479102010.1073/pnas.1600786113)
Aprison, E. Z. & Ruvinsky, I. Counteracting ascarosides act through distinct neurons to determine the sexual identity of C. elegans pheromones. Curr. Biol. 27, 2589–2599.e2583 (2017). (PMID: 2884464610.1016/j.cub.2017.07.034)
Fagan, K. A. et al. A single-neuron chemosensory switch determines the valence of a sexually dimorphic sensory behavior. Curr. Biol. 28, 902–914.e905 (2018). (PMID: 29526590586214810.1016/j.cub.2018.02.029)
Jang, H. et al. Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron 75, 585–592 (2012). (PMID: 22920251346206910.1016/j.neuron.2012.06.034)
Barrios, A., Ghosh, R., Fang, C., Emmons, S. W. & Barr, M. M. PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans. Nat. Neurosci. 15, 1675–1684 (2012). (PMID: 23143519350924610.1038/nn.3253)
Chen, D., Taylor, K. P., Hall, Q. & Kaplan, J. M. The neuropeptides FLP-2 and PDF-1 act in concert to arouse Caenorhabditis elegans locomotion. Genetics 204, 1151–1159 (2016). (PMID: 27585848510584810.1534/genetics.116.192898)
Hilbert, Z. A. & Kim, D. H. PDF-1 neuropeptide signaling regulates sexually dimorphic gene expression in shared sensory neurons of C. elegans. eLife 7, e36547 (2018). (PMID: 30024377605330310.7554/eLife.36547)
Ryu, L. et al. Feeding state regulates pheromone-mediated avoidance behavior via the insulin signaling pathway in Caenorhabditis elegans. EMBO J. 37, e98402 (2018). (PMID: 29925517606842510.15252/embj.201798402)
Liu, T., Kim, K., Li, C. & Barr, M. M. FMRFamide-like neuropeptides and mechanosensory touch receptor neurons regulate male sexual turning behavior in Caenorhabditis elegans. J. Neurosci. 27, 7174–7182 (2007). (PMID: 17611271679458410.1523/JNEUROSCI.1405-07.2007)
Li, C. & Kim, K. Family of FLP peptides in Caenorhabditis elegans and related nematodes. Front. Endocrinol. (Lausanne) 5, 150 (2014). (PMID: 10.3389/fendo.2014.00150)
Hung, W. L. et al. Attenuation of insulin signalling contributes to FSN-1-mediated regulation of synapse development. EMBO J. 32, 1745–1760 (2013). (PMID: 23665919368074210.1038/emboj.2013.91)
Leinwand, S. G. & Chalasani, S. H. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans. Nat. Neurosci. 16, 1461–1467 (2013). (PMID: 24013594378674510.1038/nn.3511)
Bhardwaj, A., Thapliyal, S., Dahiya, Y. & Babu, K. FLP-18 functions through the G-protein-coupled receptors NPR-1 and NPR-4 to modulate reversal length in Caenorhabditis elegans. J. Neurosci. 38, 4641 (2018). (PMID: 29712787596566710.1523/JNEUROSCI.1955-17.2018)
Yu, Y., Zhi, L., Guan, X., Wang, D. & Wang, D. FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci. Rep. 6, 21485 (2016). (PMID: 26887501475783710.1038/srep21485)
Pungaliya, C. et al. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 106, 7708–7713 (2009). (PMID: 19346493268308510.1073/pnas.0811918106)
Iannacone, M. J. et al. The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans. elife https://doi.org/10.7554/eLife.19837 (2017).
Beets, I. et al. Natural variation in a dendritic scaffold protein remodels experience-dependent plasticity by altering neuropeptide expression. Neuron https://doi.org/10.1016/j.neuron.2019.10.001 (2019).
Hussey, R. et al. Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in Caenorhabditis elegans. PLoS Genet. 14, e1007305–e1007305 (2018). (PMID: 29579048588669310.1371/journal.pgen.1007305)
Ringstad, N. & Horvitz, H. R. FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nat. Neurosci. 11, 1168–1176 (2008). (PMID: 18806786296331110.1038/nn.2186)
Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115–1118 (2008). (PMID: 18650807277472910.1038/nature07168)
Kim, K. & Li, C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J. Comp. Neurol. 475, 540–550 (2004). (PMID: 1523623510.1002/cne.20189)
Fenk, L. A. & de Bono, M. Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 114, 4195 (2017). (PMID: 28373553540244410.1073/pnas.1618934114)
Rengarajan, S., Yankura, K. A., Guillermin, M. L., Fung, W. & Hallem, E. A. Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 116, 1776 (2019). (PMID: 30651312635870310.1073/pnas.1807454116)
Xu, J. et al. Feeding recombinant E. coli with GST-mBmKTX fusion protein increases the fecundity and lifespan of Caenorhabditis elegans. Peptides 89, 1–8 (2017). (PMID: 2808844410.1016/j.peptides.2017.01.003)
Zhang, Y. K., Reilly, D. K., Yu, J., Srinivasan, J. & Schroeder, F. C. Photoaffinity probes for nematode pheromone receptor identification. J. Organic Biomol. Chem. https://doi.org/10.1039/c9ob02099c (2019).
Reilly, D. K., Lawler, D. E., Albrecht, D. R. & Srinivasan, J. Using an adapted microfluidic olfactory chip for the imaging of neuronal activity in response to pheromones in male C. Elegans head neurons. J. Vis. Exp. https://doi.org/10.3791/56026 (2017).
Greene, J. S. et al. Balancing selection shapes density-dependent foraging behaviour. Nature 539, 254–258 (2016b). (PMID: 27799655516159810.1038/nature19848)
Hilliard, M. A., Bergamasco, C., Arbucci, S., Plasterk, R. H. A. & Bazzicalupo, P. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. EMBO J. 23, 1101–1111 (2004). (PMID: 1498872238096910.1038/sj.emboj.7600107)
Chang, Y.-J. et al. Modulation of locomotion and reproduction by FLP neuropeptides in the nematode Caenorhabditis elegans. PLoS ONE 10, e0135164 (2015). (PMID: 26406995458331110.1371/journal.pone.0135164)
Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X. & Schafer, W. R. A database of Caenorhabditis elegans behavioral phenotypes. Nat. Methods 10, 877–879 (2013). (PMID: 23852451396282210.1038/nmeth.2560)
Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behavior in C. elegans. Nature 458, 1171–1175 (2009). (PMID: 19349961276049510.1038/nature07886)
Jiang, L. I. & Sternberg, P. W. An HMG1-like protein facilitates Wnt signaling in Caenorhabditis elegans. Genes Dev. 13, 877–889 (1999). (PMID: 1019798731659610.1101/gad.13.7.877)
Puckett Robinson, C., Schwarz, E. M. & Sternberg, P. W. Identification of DVA interneuron regulatory sequences in Caenorhabditis elegans. PLoS ONE 8, e54971 (2013). (PMID: 23383017355723910.1371/journal.pone.0054971)
Laurent, P. et al. Genetic dissection of neuropeptide cell biology at high and low activity in a defined sensory neuron. Proc. Natl Acad. Sci. USA 115, E6890 (2018). (PMID: 29959203605518510.1073/pnas.1714610115)
Kennedy, M. J. & Ehlers, M. D. Mechanisms and function of dendritic exocytosis. Neuron 69, 856–875 (2011). (PMID: 21382547307386410.1016/j.neuron.2011.02.032)
Taylor, S. R. et al. Expression profiling of the mature C. elegans nervous system by single-cell RNA-Sequencing. bioRxiv https://doi.org/10.1101/737577 (2019).
Sulston, J. E., Albertson, D. G. & Thomson, J. N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev. Biol. https://doi.org/10.1016/0012-1606(80)90352-8 (1980).
Peden, E., Kimberly, E., Gengyo-Ando, K., Mitani, S. & Xue, D. Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes Dev. 21, 3195–3207 (2007). (PMID: 18056429208198310.1101/gad.1607807)
Van Bael, S. et al. A Caenorhabditis elegans mass spectrometric resource for neuropeptidomics. J. Am. Soc. Mass Spectrom. https://doi.org/10.1007/s13361-017-1856-z (2018).
Husson, S. J., Clynen, E., Baggerman, G., Janssen, T. & Schoofs, L. Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. J. Neurochem. 98, 1999–2012 (2006). (PMID: 1694511110.1111/j.1471-4159.2006.04014.x)
Thacker, C., Srayko, M. & Rose, A. M. Mutational analysis of bli-4/kpc-4 reveals critical residues required for proprotein convertase function in C. elegans. Gene 252, 15–25 (2000). (PMID: 1090343410.1016/S0378-1119(00)00211-0)
Cardoso, J., Felix, R., Fonseca, V. & Power, D. Feeding and the rhodopsin family G-protein coupled receptors in nematodes and arthropods. Front. Endocrinol. https://doi.org/10.3389/fendo.2012.00157 (2012).
Gershkovich, M. M., Groß, V. E., Kaiser, A. & Prömel, S. Pharmacological and functional similarities of the human neuropeptide Y system in C. elegans challenges phylogenetic views on the FLP/NPR system. Cell Commun. Signal. 17, 123 (2019). (PMID: 31533726675166210.1186/s12964-019-0436-1)
Beets, I., Lindemans, M., Janssen, T. & Verleyen, P. Deorphanizing G protein-coupled receptors by a calcium mobilization assay. Methods Mol. Biol. 789, 377–391 (2011). (PMID: 2192242210.1007/978-1-61779-310-3_25)
Au, V. et al. CRISPR/Cas9 methodology for the generation of knockout deletions in Caenorhabditis elegans. G3 (Bethesda) 9, 135–144 (2019). (PMID: 10.1534/g3.118.200778)
DiLoreto, E. M., Reilly, D. K. & Srinivasan, J. Non-transgenic functional rescue of neuropeptides. bioRxiv https://doi.org/10.1101/2021.05.10.443513 (2021).
Lipton, J., Kleemann, G., Ghosh, R., Lints, R. & Emmons, S. W. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J. Neurosci. 24, 7427–7434 (2004). (PMID: 15329389672964210.1523/JNEUROSCI.1746-04.2004)
Barrios, A., Nurrish, S. & Emmons, S. W. Sensory regulation of C. elegans male mate-searching behavior. Curr. Biol. 18, 1865–1871 (2008). (PMID: 19062284265256810.1016/j.cub.2008.10.050)
Bentley, B. et al. The multilayer connectome of Caenorhabditis elegans. PLoS Comput. Biol. 12, e1005283 (2016). (PMID: 27984591521574610.1371/journal.pcbi.1005283)
Rojo Romanos, T., Petersen, J. G., Riveiro, A. R. & Pocock, R. A novel role for the zinc-finger transcription factor EGL-46 in the differentiation of gas-sensing neurons in Caenorhabditis elegans. Genetics 199, 157–163 (2015). (PMID: 2539566610.1534/genetics.114.172049)
Chew, Y. L., Grundy, L. J., Brown, A. E. X., Beets, I. & Schafer, W. R. Neuropeptides encoded by nlp-49 modulate locomotion, arousal and egg-laying behaviours in Caenorhabditis elegans via the receptor SEB-3. Philos. Trans. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2017.0368 (2018).
Nelson, M. D. et al. FRPR-4 is a G-protein coupled neuropeptide receptor that regulates behavioral quiescence and posture in Caenorhabditis elegans. PLoS ONE 10, e0142938 (2015). (PMID: 26571132464645510.1371/journal.pone.0142938)
Van Sinay, E. et al. Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 114, E4065–e4074 (2017). (PMID: 284615075441806)
Hobert, O. The neuronal genome of Caenorhabditis elegans. WormBook 1–106 https://doi.org/10.1895/wormbook.1.161.1 (2013).
Park, D. et al. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. PNAS 109, 9917–9922 (2012). (PMID: 22665789338247910.1073/pnas.1202216109)
Gulia-Nuss, M., Robertson, A. E., Brown, M. R. & Strand, M. R. Insulin-like peptides and the target of rapamycin pathway coordinately regulate blood digestion and egg maturation in the mosquito Aedes aegypti. PLoS ONE 6, e20401 (2011). (PMID: 21647424310354510.1371/journal.pone.0020401)
Dhara, A. et al. Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 43, 1100–1108 (2013). (PMID: 2407606710.1016/j.ibmb.2013.09.004)
Terrill, S. J. et al. Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-specific manner. Neuropharmacology 178, 108270 (2020). (PMID: 3279546010.1016/j.neuropharm.2020.1082707544677)
Tonoki, A., Ogasawara, M., Yu, Z. & Itoh, M. Appetitive memory with survival benefit is robust across aging in Drosophila. J. Neurosci. 40, 2296–2304 (2020). (PMID: 31992587708329610.1523/JNEUROSCI.2045-19.2020)
Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63–71 (2019). (PMID: 31270481688922610.1038/s41586-019-1352-7)
Peymen, K. et al. Myoinhibitory peptide signaling modulates aversive gustatory learning in Caenorhabditis elegans. PLoS Genet. 15, e1007945 (2019). (PMID: 30779740638054510.1371/journal.pgen.1007945)
معلومات مُعتمدة: R01 DC016058 United States DC NIDCD NIH HHS; R01 GM140480 United States GM NIGMS NIH HHS; R01 NS107475 United States NS NINDS NIH HHS; P40 OD010440 United States OD NIH HHS
المشرفين على المادة: 0 (Caenorhabditis elegans Proteins)
0 (Carrier Proteins)
0 (Receptors, Neuropeptide)
0 (nud-2 protein, C elegans)
تواريخ الأحداث: Date Created: 20210901 Date Completed: 20211207 Latest Revision: 20230413
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8408276
DOI: 10.1038/s42003-021-02547-7
PMID: 34465863
قاعدة البيانات: MEDLINE
الوصف
تدمد:2399-3642
DOI:10.1038/s42003-021-02547-7