دورية أكاديمية

Stable-Isotope-Informed, Genome-Resolved Metagenomics Uncovers Potential Cross-Kingdom Interactions in Rhizosphere Soil.

التفاصيل البيبلوغرافية
العنوان: Stable-Isotope-Informed, Genome-Resolved Metagenomics Uncovers Potential Cross-Kingdom Interactions in Rhizosphere Soil.
المؤلفون: Starr EP; Department of Plant and Microbial Biology, University of California, Berkeleygrid.47840.3f, California, USA., Shi S; Lincoln Science Centre, AgResearch Ltd., Christchurch, New Zealand., Blazewicz SJ; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratorygrid.250008.f, Livermore, California, USA., Koch BJ; Department of Biological Sciences, Northern Arizona Universitygrid.261120.6, Flagstaff, Arizona, USA.; Center for Ecosystem Science and Society, Northern Arizona Universitygrid.261120.6, Flagstaff, Arizona, USA., Probst AJ; Biofilm Center, University of Duisburg-Essen, Essen, Germany., Hungate BA; Department of Biological Sciences, Northern Arizona Universitygrid.261120.6, Flagstaff, Arizona, USA.; Center for Ecosystem Science and Society, Northern Arizona Universitygrid.261120.6, Flagstaff, Arizona, USA., Pett-Ridge J; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratorygrid.250008.f, Livermore, California, USA., Firestone MK; Department of Environmental Science, Policy, and Management, University of California, Berkeleygrid.47840.3f, California, USA.; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA., Banfield JF; Department of Environmental Science, Policy, and Management, University of California, Berkeleygrid.47840.3f, California, USA.; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA.; Department of Earth and Planetary Science, University of California, Berkeleygrid.47840.3f, California, USA.; Innovative Genomics Institute, Berkeley, California, USA.; Chan Zuckerberg Biohub, San Francisco, California, USA.
المصدر: MSphere [mSphere] 2021 Oct 27; Vol. 6 (5), pp. e0008521. Date of Electronic Publication: 2021 Sep 01.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 101674533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2379-5042 (Electronic) Linking ISSN: 23795042 NLM ISO Abbreviation: mSphere Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Society for Microbiology, [2015]-
مواضيع طبية MeSH: Bacteria/*genetics , Bacteria/*metabolism , DNA, Bacterial/*biosynthesis , Genome, Bacterial/*genetics , RNA, Bacterial/*biosynthesis, Bacteria/classification ; Carbon/metabolism ; DNA, Bacterial/genetics ; Isotope Labeling ; Metagenomics ; Phylogeny ; Plant Roots/microbiology ; RNA, Bacterial/genetics ; Rhizosphere ; Soil Microbiology
مستخلص: The functioning, health, and productivity of soil are intimately tied to a complex network of interactions, particularly in plant root-associated rhizosphere soil. We conducted a stable-isotope-informed, genome-resolved metagenomic study to trace carbon from Avena fatua grown in a 13 CO 2 atmosphere into soil. We collected paired rhizosphere and nonrhizosphere soil at 6 and 9 weeks of plant growth and extracted DNA that was then separated by density using ultracentrifugation. Thirty-two fractions from each of five samples were grouped by density, sequenced, assembled, and binned to generate 55 unique bacterial genomes that were ≥70% complete. We also identified complete 18S rRNA sequences of several 13 C-enriched microeukaryotic bacterivores and fungi. We generated 10 circularized bacteriophage (phage) genomes, some of which were the most labeled entities in the rhizosphere, suggesting that phage may be important agents of turnover of plant-derived C in soil. CRISPR locus targeting connected one of these phage to a Burkholderiales host predicted to be a plant pathogen. Another highly labeled phage is predicted to replicate in a Catenulispora sp., a possible plant growth-promoting bacterium. We searched the genome bins for traits known to be used in interactions involving bacteria, microeukaryotes, and plant roots and found DNA from heavily 13 C-labeled bacterial genes thought to be involved in modulating plant signaling hormones, plant pathogenicity, and defense against microeukaryote grazing. Stable-isotope-informed, genome-resolved metagenomics indicated that phage can be important agents of turnover of plant-derived carbon in soil. IMPORTANCE Plants grow in intimate association with soil microbial communities; these microbes can facilitate the availability of essential resources to plants. Thus, plant productivity commonly depends on interactions with rhizosphere bacteria, viruses, and eukaryotes. Our work is significant because we identified the organisms that took up plant-derived organic C in rhizosphere soil and determined that many of the active bacteria are plant pathogens or can impact plant growth via hormone modulation. Further, by showing that bacteriophage accumulate CO 2 -derived carbon, we demonstrated their vital roles in redistribution of plant-derived C into the soil environment through bacterial cell lysis. The use of stable-isotope probing (SIP) to identify consumption (or lack thereof) of root-derived C by key microbial community members within highly complex microbial communities opens the way for assessing manipulations of bacteria and phage with potentially beneficial and detrimental traits, ultimately providing a path to improved plant health and soil carbon storage.
References: Microbiol Spectr. 2015 Aug;3(4):. (PMID: 26350310)
Bioinformatics. 2016 Feb 15;32(4):605-7. (PMID: 26515820)
Nat Biotechnol. 2000 Jun;18(6):609-13. (PMID: 10835597)
Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41. (PMID: 28460038)
mBio. 2015 Aug 04;6(4):e00746. (PMID: 26242625)
Nat Microbiol. 2018 Aug;3(8):870-880. (PMID: 30013236)
Front Microbiol. 2015 Sep 09;6:937. (PMID: 26441873)
Mycorrhiza. 2016 Jul;26(5):389-99. (PMID: 26781750)
Appl Environ Microbiol. 2016 Nov 21;82(24):7217-7226. (PMID: 27736792)
mSystems. 2016 Jun 28;1(3):. (PMID: 27822530)
Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5. (PMID: 27095192)
Ecology. 2014 May;95(5):1162-72. (PMID: 25000748)
Front Microbiol. 2015 Oct 20;6:1149. (PMID: 26539178)
Appl Environ Microbiol. 2009 May;75(9):2820-30. (PMID: 19286795)
PLoS One. 2014 Feb 07;9(2):e87624. (PMID: 24516555)
Front Microbiol. 2015 Feb 05;6:42. (PMID: 25699032)
Bioinformatics. 2007 May 15;23(10):1282-8. (PMID: 17379688)
Cell Host Microbe. 2014 Jan 15;15(1):9-21. (PMID: 24332978)
ISME J. 2014 Sep;8(9):1855-65. (PMID: 24621520)
Front Microbiol. 2015 Aug 12;6:789. (PMID: 26322024)
Nat Microbiol. 2018 Jul;3(7):836-843. (PMID: 29807988)
PeerJ. 2015 May 28;3:e985. (PMID: 26038737)
J Exp Bot. 2006;57(3):489-505. (PMID: 16377733)
ISME J. 2015 Mar 17;9(4):797-808. (PMID: 25279786)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
Trends Microbiol. 2017 Apr;25(4):280-292. (PMID: 28038926)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
FEMS Microbiol Ecol. 2012 Feb;79(2):371-9. (PMID: 22092599)
Nucleic Acids Res. 1997 Mar 1;25(5):955-64. (PMID: 9023104)
Microbiol Resour Announc. 2019 Jul 3;8(27):. (PMID: 31270193)
Appl Environ Microbiol. 2003 Jan;69(1):285-9. (PMID: 12514006)
Phytochemistry. 2006 Oct;67(20):2262-8. (PMID: 16949113)
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37. (PMID: 21593126)
Environ Microbiol. 2004 Jan;6(1):73-8. (PMID: 14686943)
Environ Microbiol. 2018 Jan;20(1):293-304. (PMID: 29159973)
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10931-6. (PMID: 22715291)
Genome Res. 2000 Aug;10(8):1204-10. (PMID: 10958638)
Nat Microbiol. 2018 Mar;3(3):328-336. (PMID: 29379208)
BMC Genomics. 2016 May 17;17:356. (PMID: 27184979)
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25900-25908. (PMID: 31772013)
Front Microbiol. 2016 Apr 20;7:525. (PMID: 27148214)
Bioinformatics. 2010 Oct 1;26(19):2460-1. (PMID: 20709691)
FEMS Microbiol Ecol. 2007 Dec;62(3):365-73. (PMID: 17949434)
Elife. 2015 Mar 03;4:. (PMID: 25735037)
FEMS Microbiol Ecol. 2007 Apr;60(1):126-35. (PMID: 17313661)
Nat Commun. 2010 Jul 27;1:48. (PMID: 20975705)
Sci Rep. 2015 Mar 18;5:9212. (PMID: 25784647)
World J Microbiol Biotechnol. 2017 Oct 6;33(11):197. (PMID: 28986676)
PLoS Pathog. 2014 Aug 21;10(8):e1004288. (PMID: 25144637)
Genome Res. 2015 Apr;25(4):534-43. (PMID: 25665577)
Curr Biol. 2007 Oct 23;17(20):1784-90. (PMID: 17919906)
PLoS One. 2011 Apr 29;6(4):e19385. (PMID: 21559419)
Microbiol Spectr. 2016 Feb;4(1):. (PMID: 26999395)
Bioinformatics. 2012 Jun 15;28(12):1647-9. (PMID: 22543367)
Biomed Res Int. 2017;2017:1829685. (PMID: 28299315)
PLoS One. 2013 Nov 07;8(11):e79705. (PMID: 24244546)
Nature. 2018 Aug;560(7717):233-237. (PMID: 30069051)
Sci Rep. 2018 Aug 30;8(1):13108. (PMID: 30166611)
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46. (PMID: 21672958)
Bioinformatics. 2012 Jun 1;28(11):1420-8. (PMID: 22495754)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
Environ Microbiol. 2018 Dec;20(12):4444-4460. (PMID: 30047192)
ISME J. 2019 Jan;13(1):214-226. (PMID: 30171254)
FEMS Microbiol Ecol. 2012 Aug;81(2):291-302. (PMID: 22385286)
PLoS One. 2015 Jun 24;10(6):e0131498. (PMID: 26107258)
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4927-32. (PMID: 12684534)
Science. 2018 Jan 19;359(6373):320-325. (PMID: 29348236)
Appl Environ Microbiol. 2015 Nov;81(21):7570-81. (PMID: 26296731)
Nucleic Acids Res. 1999 Jan 1;27(1):29-34. (PMID: 9847135)
Trends Microbiol. 2005 Jul;13(7):302-7. (PMID: 15935676)
mSystems. 2018 Oct 2;3(5):. (PMID: 30320215)
Database (Oxford). 2011 Mar 29;2011:bar009. (PMID: 21447597)
Microbiome. 2015 Dec 08;3:62. (PMID: 26642878)
Front Microbiol. 2017 Jun 02;8:971. (PMID: 28626450)
Environ Microbiol. 2017 Feb;19(2):459-474. (PMID: 27112493)
PeerJ. 2016 Nov 8;4:e2687. (PMID: 27843720)
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51. (PMID: 22645317)
Bioinformatics. 2001 Sep;17(9):847-8. (PMID: 11590104)
Biodegradation. 2001;12(3):179-88. (PMID: 11826899)
Microbiologyopen. 2016 Jun;5(3):512-26. (PMID: 27060604)
Front Microbiol. 2017 Jan 31;8:38. (PMID: 28197129)
mSystems. 2020 Jul 21;5(4):. (PMID: 32694124)
Genome Res. 2013 Jan;23(1):111-20. (PMID: 22936250)
FEMS Microbiol Ecol. 2008 Nov;66(2):197-207. (PMID: 18721146)
Nature. 2018 Jun;558(7710):440-444. (PMID: 29899444)
BMC Bioinformatics. 2010 Mar 08;11:119. (PMID: 20211023)
ISME J. 2020 Apr;14(4):999-1014. (PMID: 31953507)
Microbiome. 2018 Jul 3;6(1):122. (PMID: 29970182)
ISME J. 2019 Feb;13(2):413-429. (PMID: 30258172)
Nat Microbiol. 2019 Aug;4(8):1356-1367. (PMID: 31110364)
Microbes Environ. 2015;30(1):63-9. (PMID: 25740621)
Appl Environ Microbiol. 2015 Oct;81(20):7098-105. (PMID: 26231654)
PeerJ. 2015 Aug 27;3:e1165. (PMID: 26336640)
Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101. (PMID: 29771380)
Front Microbiol. 2018 Jul 23;9:1635. (PMID: 30083144)
فهرسة مساهمة: Keywords: bacteriophages; metagenomics; plant-microbe interactions; rhizosphere; stable-isotope probing
سلسلة جزيئية: figshare 10.6084/m9.figshare.c.5405805
المشرفين على المادة: 0 (DNA, Bacterial)
0 (RNA, Bacterial)
7440-44-0 (Carbon)
تواريخ الأحداث: Date Created: 20210901 Date Completed: 20220202 Latest Revision: 20220202
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC8550312
DOI: 10.1128/mSphere.00085-21
PMID: 34468166
قاعدة البيانات: MEDLINE
الوصف
تدمد:2379-5042
DOI:10.1128/mSphere.00085-21