دورية أكاديمية

Two centuries of distribution data: detection of areas of endemism for the Brazilian angiosperms.

التفاصيل البيبلوغرافية
العنوان: Two centuries of distribution data: detection of areas of endemism for the Brazilian angiosperms.
المؤلفون: Gomes-da-Silva J; Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, RJ, 22460-030, Brazil.; Programa de Pós-Graduação em Botânica, Universidade Federal do Paraná, Av. Francisco Heráclito dos Santos s.n., Campus do Centro Politécnico, Curitiba, PR, 81531-980, Brazil., Forzza RC; Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, RJ, 22460-030, Brazil.
المصدر: Cladistics : the international journal of the Willi Hennig Society [Cladistics] 2021 Aug; Vol. 37 (4), pp. 442-458. Date of Electronic Publication: 2020 Dec 14.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 9881057 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-0031 (Electronic) Linking ISSN: 07483007 NLM ISO Abbreviation: Cladistics Subsets: MEDLINE
أسماء مطبوعة: Publication: <2014-> : Hoboken, NJ : John Wiley & Sons
Original Publication: London : Published for the Willi Hennig Society by Academic Press
مواضيع طبية MeSH: Biodiversity* , Biological Evolution* , Conservation of Natural Resources* , Phylogeny*, Magnoliopsida/*physiology, Brazil ; Forests
مستخلص: Brazil has high levels of biodiversity and has received strong criticism for the increasing country-wide deforestation that threatens it. Although a significant percentage of land area in Brazil is protected, the areas are insufficient and unevenly distributed. Many studies have contributed to the biogeographical knowledge of Brazilian flora, but no endemicity analysis (EA) has been conducted including all endemic angiosperms. We investigated the spatial component, drawing on a huge and taxonomically diverse dataset based on 827 016 records collected over the last two centuries. We conducted an EA for 15 034 species from 173 families using an optimality criterion with 2° and 3° grid sizes, in order to search for distributional concordance, to identify the biogeographical units and discuss the implications for conservation. Six analyses were run for basal angiosperms, monocots and eudicots. The EA recovered 66 consensus areas (CAs). The concordance of CAs enabled the identification of five best-supported areas of endemism--three in the Atlantic and Parana Forest and two areas in the Cerrado province--supported by species of 120 families. The age of divergence for some genera that contributed significantly to the identification of areas recovered in the Cerrado coincides with the recent, <10 Ma, estimated age of that province. By contrast, the areas in the Atlantic and Parana Forest are supported by genera with earlier diversification >30 Ma, supporting an ancient origin. Most areas in the Atlantic Forest are partially superimposed with the limits of the protected areas, however, big gaps were identified in the Cerrado. Protecting Brazilian biomes was at the heart of Brazil's environmental policy. Regrettably, this scenario has radically changed based on misleading divergences in conservation policy. Areas of endemism are pivotal for biodiversity conservation due to the common evolutionary history shared by their endemic taxa. Thus, we hope that these congruent patterns of endemism support the establishment of biodiversity priorities.
(© The Willi Hennig Society 2020.)
References: Aagesen, L., Szumik, C. and Goloboff, P., 2013. Consensus in the search for areas of endemism. J. Biogeogr. 40, 2011-2016.
Alcantara, S., Ree, R.H. and Mello-Silva, R., 2018. Accelerated diversification and functional trait evolution in Velloziaceae reveal new insights into the origins of the ‘campos rupestres’ exceptional floristic richness. Ann. Bot. 122, 165-180.
Alves, R., Silva, N.G., Oliveira, J.A. and Medeiros, D., 2014. Circumscribing campo rupestre-megadiverse Brazilian rocky montane savanas. Braz. J. Biol. 74, 355-362.
Alzate, F., Quijano-Abril, M.A. and Morrone, J.J., 2008. Panbiogeographical analysis of the genus Bomarea (Alstroemeriaceae). J. Biogeogr. 35, 1250-1257.
Antonelli, A., Zizka, A., Carvalho, F.A., Scharn, R., Bacon, C.D., Silvestro, D. and Condamine, F.L., 2018a. Brazilian Amazon is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. U.S.A. 115, 6034-6039.
Antonelli, A., Ariza, M., Albert, J., Andermann, T., Azevedo, J., Bacon, C., Faurby, S., Guedes, T., Hoorn, C., Lohmann, L.G. et al., 2018b. Conceptual and empirical advances in Neotropical biodiversity research. PeerJ 6, e5644.
Angiosperm Phylogeny Group (APG IV), 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20.
Baker, P.A., Fritz, S.C., Battisti, D.S., Dick, C.W., Vargas, O.M., Asner, G.P., Martin, R.E., Wheatley, A. and Prates, I., 2020. Beyond Refugia: New insights on Quaternary climate variation and the evolution of biotic diversity in tropical South America. In Valentí, R. & Ana, C.C. (Eds.), Neotropical Diversification: Patterns and Processes. Springer: Cham, pp. 51-70.
Batalha, M.A., Silva, I.A., de Cianciaruso, M.V. and Carvalho, G.H., 2011. Trait diversity on the phylogeny of Cerrado woody species. Oikos 120, 1741-1751.
Batalha-Filho, H., Fjeldså, J., Fabre, P.H. and Miyaki, C.Y., 2013. Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J. Ornithol. 154, 41-50.
Berger, B.A., Kriebel, R., Spalink, D. and Sytsma, K.J., 2016. Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Mol. Phylogenet. Evol. 95, 116-136.
Bueno, M.L., Pennington, R.T., Dexter, K.G., Kamino, L.H.Y., Pontara, V., Neves, D.M., Rater, A.J. and Oliveira-Filho, A.T., 2016. Effects of Quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography 39, 1-12.
Burnham, R.J. and Johnson, K.R., 2004. South American palaeobotany and the origins of Neotropical rainforests. Phil. Trans. R. Soc. B 359, 1595-1610.
Canteiro, C., Barcelos, L., Filardi, F., Forzza, R., Green, L., Lanna, J., Leitman, P., Milliken, W., Pires Morim, M., Patmore, K. et al., 2019. Enhancement of conservation knowledge through increased access to botanical information. Conserv. Biol. 33, 523-533.
Cardoso, D., Särkinen, T., Alexander, S., Amorim, A.M., Bittrich, V., Celis, M., Daly, D.C., Fiaschi, P., Funk, V.A., Giacomin, L.L. et al., 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. U.S.A. 114, 10695-10700.
Carine, M.A., Humphries, C.J., Guma, I.R., Reyes-Betancort, J.A. and Santos Guerra, A., 2009. Areas and algorithms: evaluating numerical approaches for the delimitation of areas of endemism in the Canary Islands archipelago. J. Biogeogr. 36, 593-611.
Carnaval, A.C. and Moritz, C., 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J. Biogeogr. 35, 1187-1201.
Casagranda, D., Roig-Juñent, S. and Szumik, C., 2009. Endemismo a diferentes escalas espaciales: un ejemplo con Carabidae (Coleoptera: Insecta) de América del Sur austral. Rev. Chil. Hist. Nat. 82, 17-42.
Casagranda, M.D. and Goloboff, P.A., 2019. On stability measures and effects of data structure in the recognition of areas of endemism. Biol. J. Linn. Soc. Lond. 1271, 143-155.
Casagranda, M.D., Taher, L. and Szumik, C.A., 2012. Endemicity analysis, parsimony and biotic elements: a formal comparison using hypothetical distributions. Cladistics 28, 645-654.
Casado, L. and Londoño, E., 2019. Under Brazil’s Far-Right Leader, Amazon Protections Slashed and Forests Fall. The New York Times. Available with subscription at: https://www.nytimes.com/2019/07/28/world/americas/brazil-deforestation-amazon-bolsonaro.html.
Cassia-Silva, C., Cianciaruso, M.V., Dias, P.A., Freitas, C.G., Souza-Neto, A.C. and Collevatti, R.G., 2020. Among cradles and museums: seasonally dry forest promotes lineage exchanges between rain forest and savanna. Plant. Ecol. Divers., 13, 1-13.
Castro, A.A.J.F., Martins, F.R., Tamashiro, J.Y. and Shepherd, G.J., 1999. How rich is the flora of Brazilian cerrados? Ann. Mo. Bot. Gard. 86, 192-224.
CNCFlora, 2020. Lista Vermelha da flora brasileira versão 2012.2 Centro Nacional de Conservação da Flora. Available at: http://cncflora.jbrj.gov.br/portal/pt-br/listavermelha(Accessed 12 march 2020).
DaSilva, M.B., Pinto-da-Rocha, R. and DeSouza, A.M., 2015. A protocol for the delimitation of areas of endemism and the historical regionalization of the Brazilian Atlantic Rain Forest using harvestmen distribution data. Cladistics 31, 692-705.
De Marques, A.A.B. and Peres, C.A., 2015. Pervasive legal threats to protected areas in Brazil. Oryx 49, 25-29.
De Oliveira, P.E., Raczka, M., McMichael, C.N., Pinaya, J.L. and Bush, M.B., 2020. Climate change and biogeographic connectivity across the Brazilian Cerrado. J. Biogeogr. 47, 396-407.
De Souza, É.R., Lewis, G.P., Forest, F., Schnadelbach, A.S., van den Berg, C. and de Queiroz, L.P., 2013. Phylogeny of Calliandra (Leguminosae: Mimosoideae) based on nuclear and plastid molecular markers. Taxon 626, 1200-1219.
Echternacht, L., Trovó, M., Oliveira, C.T. and Pirani, J.R., 2011. Areas of endemism in the Espinhaco Range in Minas Gerais, Brazil. Flora 206, 782-791.
Elías, G.D.V. and Aagesen, L., 2019. Areas of endemism and recent speciation in the Southern Cone of South America, using Senecio (Asteraceae) as a proxy. Biol. J. Linn. Soc. Lond. 128, 70-82.
Escalante, T., Szumik, C. and Morrone, J.J., 2009. Areas of endemism of Mexican mammals: reanalysis applying the optimality criterion. Biol. J. Linn. Soc. Lond. 98, 468-478.
Escobar, H., 2019. Deforestation in the Brazilian Amazon is shooting up, but Brazil’s president calls the data ‘a lie’. Science 10. https://doi.org/10.1126/science.aay9103.
Ferrier, S., 2002. Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst. Biol. 51, 331-363.
Fiaschi, P. and Pirani, J.R., 2009. Review of plant biogeographic studies in Brazil. J. Syst. Evol. 47, 477-496.
Flora do Brasil, 2020 under construction. Jardim Botânico do Rio de Janeiro. Available at: http://floradoBrazil.jbrj.gov.br/ (Access In: 2019-2020).
Funk, V., 2003. The importance of herbaria. Plant Sci. Bull. 49, 94-95.
Gámez, N., Escalante, T., Espinosa, D., Eguiarte, L.E. and Morrone, J.J., 2014. Temporal dynamics of areas of endemism under climate change: a case study of Mexican Bursera (Burseraceae). J. Biogeogr. 41, 871-881.
Geldmann, J., Coad, L., Barnes, M., Craigie, I.D., Hockings, M., Knights, K., Leverington, F., Cuadros, I.C., Zamora, C., Woodley, S. and Burgess, N.D., 2015. Changes in protected area management effectiveness over time: a global analysis. Biol. Conserv. 191, 692-699.
Goldenberg, R., Penneys, D.S., Almeda, F., Judd, W.S. and Michelangeli, F.A., 2008. Phylogeny of Miconia (Melastomataceae): patterns of stamen diversification in a megadiverse neotropical genus. Int. J. Plant Sci. 169, 963-979.
Goloboff, P., 2004. NDM/VNDM: programs for identification of areas of endemism. Programs and documentation. Available at: http://zmuc.dk/public/phylogeny/endemism.
Gomes-da-Silva, J., Amorim, A.M. and Forzza, R.C., 2017. Distribution of the xeric clade species of Pitcairnioideae (Bromeliaceae) in South America: a perspective based on areas of endemism. J. Biogeogr. 44, 1994-2006.
Gomes-da-Silva, J., Santos-Silva, F. and Forzza, R.C., 2019. Does nomenclatural stability justify para/polyphyletic taxa? A phylogenetic classification in the xeric clade Pitcairnioideae (Bromeliaceae). Syst. Biodivers. 17, 467-490.
Graham, C.H., Moritz, C. and Williams, S.E., 2006. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl. Acad. Sci. U.S.A. 103, 632-636.
Guerra, A., Reis, L.K., Borges, F.L., Ojeda, P.T., Pineda, D.A., Miranda, C.O., de Lima Maidana, D.P., dos Santos, T.M., Shibuya, P.S., Marques, M.C. et al., 2020. Ecological restoration in Brazilian biomes: identifying advances and gaps. For. Ecol. Manage. 458, 117802.
Hoffmeister, C.H. and Ferrari, A., 2016. Areas of endemism of arthropods in the Atlantic Forest (Brazil): an approach based on a metaconsensus criterion using endemicity analysis. Biol. J. Linn. Soc. Lond. 119, 126-144.
Hopkins, M.J., 2007. Modelling the known and unknown plant biodiversity of the Brazilian Amazon Basin. J. Biogeogr. 34, 1400-1411.
Hortal, J., de Bello, F., Diniz-Filho, J.A.F., Lewinsohn, T.M., Lobo, J.M. and Ladle, R.J., 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523-549.
IBGE, 2012. Instituto Brasileiro de Geografia e Estatística. Available at: www.ibge.gov.br/home/download/geociencias.shtm. Accessed January-December 2019.
IUCN, 2020. The IUCN red list of threatened species. Version 2019-3. Available at: https://www.iucnredlist.org.
Juffe-Bignoli, D., Burgess, N.D., Bingham, H., Belle, E.M.S., de Lima, M.G., Deguignet, M., Bertzky, B., Milam, A.N., Martinez-Lopez, J., Lewis, E. et al., 2014. Protected Planet Report 2014. UNEP-WCMC, Cambridge, p. 11.
da Junior, W.J. C., 2008. Plano de Manejo da Reserva Biológica da União. Brasil.
Kelloff, C.L. and Funk, V.A., 2004. Phytogeography of the Kaieteur Falls, Potaro Plateau, Guyana: floral distributions and affinities. J. Biogeogr. 31, 501-513.
Laffan, S.W. and Crisp, M.D., 2003. Assessing endemism at multiple spatial scales, with an example from the Australian vascular flora. J. Biogeogr. 30, 511-520.
Laurance, W.F., 2007. Have we overstated the tropical biodiversity crisis? Trends Ecol. Evol. 22, 65-70.
Leite, Y.L., Costa, L.P., Loss, A.C., Rocha, R.G., Batalha-Filho, H., Bastos, A.C., Quaresma, V.S., Fagundes, V., Paresque, R., Passamani, M. et al., 2016. Neotropical forest expansion during the last glacial period challenges refuge hypothesis. Proc. Natl. Acad. Sci. U.S.A. 113, 1008-1013.
Levis, C., Flores, B.M., Mazzochini, G.G., Manhães, A.P., Campos-Silva, J.V., de Amorim, P.B., Peroni, N., Hirota, M. and Clement, C.R. 2020. Help restore Brazil’s governance of globally important ecosystem services. Nat. Ecol. Evol. 4, 172-173.
Linder, H.P., 2001. Plant diversity and endemism in sub-Saharan tropical Africa. J. Biogeogr. 28, 169-182.
Linder, H.P., 2008. Plant species radiations: where, when, why? Phil. Trans. R. Soc. B 363, 3097-3105.
Löwenberg-Neto, P., 2014. Neotropical region: a shapefile of Morrone’s 2014 biogeographical regionalization. Zootaxa 3802, 300.
Lu, L.M., Mao, L.F., Yang, T., Ye, J.F., Liu, B., Li, H.L., Sun, M., Miller, J.T., Mathews, S., Hu, H.H. et al., 2018. Evolutionary history of the angiosperm flora of China. Nature 554, 234-238.
Martínez-Hernández, F., Mendoza-Fernández, A.J., Pérez-García, F.J., Martínez-Nieto, M.I., Garrido-Becerra, J.A., Salmerón-Sánchez, E., Merlo, M.E., Gil, C. and Mota, J.F., 2015. Areas of endemism as a conservation criterion for Iberian gypsophilous flora: a multi-scale test using the NDM/VNDM program. Plant Biosyst. 149, 483-493.
Maurin, O., Davies, T.J., Burrows, J.E., Daru, B.H., Yessoufou, K., Muasya, A.M., Van der Bank, M. and Bond, W.J., 2014. Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytol. 204, 201-214.
McDonald-Spicer, C., Knerr, N.J., Encinas-Viso, F. and Schmidt-Lebuhn, A.N., 2019. Big data for a large clade: bioregionalization and ancestral range estimation in the daisy family (Asteraceae). J. Biogeogr. 46, 255-267.
Mercado-Gómez, J.D. and Escalante, T., 2019. Areas of endemism of the Neotropical species of Capparaceae. Biol. J. Linn. Soc. Lond. 126, 507-520.
MMA - Ministério do Meio Ambiente, 2020. Tabela consolidada das Unidades de Conservação. Available at: http://www.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs (accessed feb 2020).
Michalak, I., Zhang, L.B. and Renner, S.S., 2010. Trans-Atlantic, trans-Pacific and trans-Indian Ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. J. Biogeogr. 37, 1214-1226.
Mittermeier, R.A., Fonseca, G.A.B., Rylands, A.B. and Brandon, K., 2005. A brief history of biodiversity conservation in Brazil. Conserv. Biol. 19, 601-611.
Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M. and Gascon, C., 2011. Global biodiversity conservation: the critical role of hotspots. In: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, London, pp. 3-22.
Morawetz, W. and Raedig, C., 2007. Angiosperm biodiversity, endemism and conservation in the Neotropics. Taxon 56, 1245-1254.
Morrone, J.J., 2001. Homology, biogeography and areas of endemism. Divers. Distrib. 7, 297-300.
Morrone, J.J., 2009. Evolutionary Biogeography: An Integrative Approach with Case Studies. New York: Columbia University Press.
Morrone, J.J., 2014a. Parsimony analysis of endemicity (PAE) revisited. J. Biogeogr. 41, 842-854.
Morrone, J.J., 2014b. Biogeographical regionalization of the Neotropical region. Zootaxa 3782, 1-110.
Morrone, J.J., 2017. Neotropical Biogeography: Regionalization and Evolution. Boca Raton: CRC Press.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B. and Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.
Navarro, F.R., Cuezzo, F., Goloboff, P., Szumik, C., Lizarralde de Grosso, M. and Quintana, M.G., 2009. Can insect data be used to infer areas of endemism? An example from the Yungas of Argentina. Rev. Chil. Hist. Nat. 82, 507-522.
Neves, D.M., Dexter, K.G., Pennington, R.T., Bueno, M.L., de Miranda, P.L. and Oliveira-Filho, A.T., 2018. Lack of floristic identity in campos rupestres - a hyperdiverse mosaic of rocky montane savannas in South America. Flora 238, 24-31.
Nihei, S.S. and Carvalho, C.J.B., 2007. Systematics and biogeography of Polietina Schnabl and Dziedzicki (Diptera, Muscidae): Neotropical area relationships and Amazonia as a composite area. Sys. Entomol. 32, 477-501.
Noroozi, J., Naqinezhad, A., Talebi, A., Doostmohammadi, M., Plutzar, C., Rumpf, S.B., Asgarpour, Z. and Schneeweiss, G.M., 2019. Hotspots of vascular plant endemism in a global biodiversity hotspot in Southwest Asia suffer from significant conservation gaps. Biol. Conserv. 237, 299-307.
Oliveira, U., Soares-Filho, B.S., Paglia, A.P., Brescovit, A.D., De Carvalho, C.J., Silva, D.P., Rezende, D.T., Leite, F.S., Batista, J.A., Barbosa, J.P. et al., 2017. Biodiversity conservation gaps in the Brazilian protected areas. Sci. Rep. 7, 1-9.
Oliveira, U., Soares-Filho, B.S., Santos, A.J., Paglia, A.P., Brescovit, A.D., de Carvalho, C.J.B., Silva, D.P., Rezende, D.T., Leite, F.S.F., Batista, J.A.N. et al., 2019. Modelling highly biodiverse areas in Brazil. Sci. Rep. 9, 1-9.
Platnick, N.I., 1991. On areas of endemism. Aust. Syst. Bot. 4, 11-12.
Prado, D.E. and Gibbs, P.E., 1993. Patterns of species distributions in the dry seasonal forests of South America. Ann. Mo. Bot. Gard. 80, 902-927.
Prado, J.R., Brennand, P.G., Godoy, L.P., Libardi, G.S., Abreu-Júnior, E.F., Roth, P.R., Chiquito, E.A. & Percequillo, A.R., 2015. Species richness and areas of endemism of oryzomyine rodents (Cricetidae, Sigmodontinae) in South America: an NDM/VNDM approach. J. Biogeogr. 42, 540-551.
Prance, G.T., 1988. Padrões de distribuição e especiação em Chrysobalanaceae e outras famílias de plantas amazônicas. Acta. Bot. Bras. 1, 1-25.
Quijano-Abril, M.A., Callejas-Posada, R. and Miranda-Esquivel, D.R., 2006. Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). J. Biogeogr. 33, 1266-1278.
Raedig, C., Dormann, C.F., Hildebrandt, A. and Lautenbach, S., 2010. Reassessing Neotropical angiosperm distribution patterns based on monographic data: a geometric interpolation approach. Biodivers. Conserv. 19, 1523-1546.
Rando, J.G., Zuntini, A.R., Conceição, A.S., van den Berg, C., Pirani, J.R. and de Queiroz, L.P., 2016. Phylogeny of Chamaecrista ser. Coriaceae (Leguminosae) unveils a lineage recently diversified in Brazilian campo rupestre vegetation. Int. J. Plant Sci. 177, 3-17.
Reginato, M. and Michelangeli, F.A., 2016. Untangling the phylogeny of Leandra s. str. (Melastomataceae, Miconieae). Mol. Phylogenet. Evol. 96, 17-32.
Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J. and Hirota, M.M., 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141-1153.
Rull, V., 2011. Neotropical biodiversity: timing and potential drivers. Trends Ecol. Evol. 26, 508-513.
Salinas, N.R. and Wheeler, W.C., 2020. Statistical modeling of distribution patterns: a markov random field implementation and its application on areas of endemism. Syst. Biol. 69, 76-90.
Schulman, L., Toivonen, T. and Ruokolainen, K., 2007. Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation. J. Biogeogr. 34, 1388-1399.
Schütz, N., Krapp, F., Wagner, N. and Weising, K., 2016. Phylogenetics of Pitcairnioideae ss (Bromeliaceae): evidence from nuclear and plastid DNA sequence data. Bot. J. Linn. Soc. Lond. 181, 323-342.
Sheldon, K.S., 2019. Climate change in the tropics: ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst. 50, 303-333.
Silveira, F.A., Negreiros, D., Barbosa, N.P., Buisson, E., Carmo, F.F., Carstensen, D.W., Conceição, A.A., Cornelissen, T.G., Echternacht, L., Fernandes, G.W. et al., 2016. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403, 129-152.
Simon, M.F. and Pennington, T., 2012. Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Int. J. Plant Sci. 173, 711-723.
Singh, J.S., 2002. The biodiversity crisis: a multifaceted review. Curr. Sci. 82, 638-647.
SOS Mata Atlântica and Instituto Nacional de Pesquisas Espaciais - INPE, 2019. Atlas dos Remanescentes Florestais da Mata Atlântica - Relatório Técnico Período 2017-2018. Fundação, São Paulo.
Souza-Neto, A.C., Cianciaruso, M.V. and Collevatti, R.G., 2016. Habitat shifts shaping the diversity of a biodiversity hotspot through time: insights from the phylogenetic structure of Caesalpinioideae in the Brazilian Cerrado. J. Biogeogr. 43, 340-350.
Stropp, J., Umbelino, B., Correia, R.A., Campos-Silva, J.V., Ladle, R.J. and Malhado, A.C.M., 2020. The ghosts of forests past and future: deforestation and botanical sampling in the Brazilian Amazon. Ecography 43, 1-11. https://doi.org/10.1111/ecog.05026.
Szumik, C. and Goloboff, P., 2004. Areas of endemism: an improved optimality criterion. Syst. Biol. 53, 968-977.
Szumik, C., Cuezzo, F., Goloboff, P. and Chalup, A., 2002. An optimality criterion to determine areas of endemism. Syst. Biol. 51, 806-816.
Szumik, C., Aagesen, L., Casagranda, D., Arzamendia, V., Baldo, D., Claps, L.E., Cuezzo, F., Diaz Gomez, J.M., Di Giacomo, A., Giraudo, A. et al., 2012. Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics 28, 317-329.
Szumik, C., Pereyra, V.V. and Casagranda, M.D., 2019. Areas of endemism: to overlap or not to overlap, that is the question. Cladistics 35, 198-229.
Talluto, M.V., Boulangeat, I., Vissault, S., Thuiller, W. and Gravel, D., 2017. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 182.
Thiers, B., 2014 [continuously updated]. Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at: http://sweetgum.nybg.org/ih/ (accessed 2020).
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F., De Siqueira, M.F., Grainger, A., Hannah, L. and Hughes, L., 2004. Extinction risk from climate change. Nature 427, 145-148.
Urban, M.C., 2015. Accelerating extinction risk from climate change. Science 348, 571-573.
Vasconcelos, T.N.C., Proença, C.E.B., Ahmad, B., Aguilar, D.S., Aguilar, R., Amorim, B.S., Campbell, K., Costa, I.R., De-Carvalho, P.S., Faria, J.E.Q. et al., 2017. Myrteae phylogeny, calibration, biogeography and diversification patterns: increased understanding in the most species rich tribe of Myrtaceae. Mol. Phylogenet. Evol. 109, 113-137.
Vieira, L.T., Castro, A.A., Coutinho, J.M., de Sousa, S.R., de Farias, R.R., Castro, N.M. and Martins, F.R., 2019. A biogeographic and evolutionary analysis of the flora of the North-eastern cerrado, Brazil. Plant Ecol. Divers. 12, 475-488.
Wan, J.Z., Wang, C.J. and Zhang, Z.X., 2020. Environmental predictors of vascular plant richness at large spatial scales based on protected area data of China. Glob. Ecol. Conserv. 21, e00846.
Werneck, F.P., Nogueira, C., Colli, G.R., Sites, J.W. Jr and Costa, G.C., 2012. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J. Biogeogr. 39, 1695-1706.
Wheeler, Q.D., 2010. What would NASA do? Mission-critical infrastructure for species exploration. Syst. Biodivers. 8, 11-15.
Wheeler, Q.D., Knapp, S., Stevenson, D.W., Stevenson, J., Blum, S.D., Boom, B.M., Borisy, G.G., Buizer, J.L., De Carvalho, M.R., Cibrian, A. et al., 2012. Mapping the biosphere: exploring species to understand the origin, organization, and sustainability of biodiversity. Syst. Biodivers. 10, 1-20.
تواريخ الأحداث: Date Created: 20210903 Date Completed: 20220124 Latest Revision: 20220124
رمز التحديث: 20231215
DOI: 10.1111/cla.12445
PMID: 34478191
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-0031
DOI:10.1111/cla.12445