دورية أكاديمية

Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web.

التفاصيل البيبلوغرافية
العنوان: Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web.
المؤلفون: Kallal RJ; Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.; Department of Entomology, National Museum of Natural History, 10th & Constitution Ave. NW, Washington, DC, 20560, USA., Kulkarni SS; Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.; Department of Entomology, National Museum of Natural History, 10th & Constitution Ave. NW, Washington, DC, 20560, USA., Dimitrov D; Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, Bergen, 5020, Norway., Benavides LR; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA., Arnedo MA; Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain., Giribet G; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA., Hormiga G; Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC, 20052, USA.
المصدر: Cladistics : the international journal of the Willi Hennig Society [Cladistics] 2021 Jun; Vol. 37 (3), pp. 298-316. Date of Electronic Publication: 2020 Oct 29.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 9881057 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-0031 (Electronic) Linking ISSN: 07483007 NLM ISO Abbreviation: Cladistics Subsets: MEDLINE
أسماء مطبوعة: Publication: <2014-> : Hoboken, NJ : John Wiley & Sons
Original Publication: London : Published for the Willi Hennig Society by Academic Press
مواضيع طبية MeSH: Biological Evolution* , Phylogeny* , Transcriptome*, Insect Proteins/*genetics , Predatory Behavior/*physiology , Spiders/*classification, Animals ; Spiders/genetics ; Spiders/physiology
مستخلص: High throughput sequencing and phylogenomic analyses focusing on relationships among spiders have both reinforced and upturned long-standing hypotheses. Likewise, the evolution of spider webs-perhaps their most emblematic attribute-is being understood in new ways. With a matrix including 272 spider species and close arachnid relatives, we analyze and evaluate the relationships among these lineages using a variety of orthology assessment methods, occupancy thresholds, tree inference methods and support metrics. Our analyses include families not previously sampled in transcriptomic analyses, such as Symphytognathidae, the only araneoid family absent in such prior works. We find support for the major established spider lineages, including Mygalomorphae, Araneomorphae, Synspermiata, Palpimanoidea, Araneoidea and the Retrolateral Tibial Apophysis Clade, as well as the uloborids, deinopids, oecobiids and hersiliids Grade. Resulting trees are evaluated using bootstrapping, Shimodaira-Hasegawa approximate likelihood ratio test, local posterior probabilities and concordance factors. Using structured Markov models to assess the evolution of spider webs while accounting for hierarchically nested traits, we find multiple convergent occurrences of the orb web across the spider tree-of-life. Overall, we provide the most comprehensive spider tree-of-life to date using transcriptomic data and use new methods to explore controversial issues of web evolution, including the origins and multiple losses of the orb web.
(© The Willi Hennig Society 2020.)
References: Álvarez-Padilla, F., Dimitrov, D., Giribet, G. and Hormiga, G., 2009. Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics 25, 109-146. https://doi.org/10.1111/j.1096-0031.2008.00242.x.
Álvarez-Padilla, F., Kallal, R.J. and Hormiga, G., 2020. Taxonomy and phylogenetics of Nanometinae and other Australasian orb-weaving spiders (Araneae: Tetragnathidae). Bull. Am. Mus. Nat. Hist. 438, 1-107.
Ané, C., Larget, B., Baum, D.A., Dewitt Smith, S. and Rokas, A., 2007. Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24, 412-426.
Arnedo, M.A., Hormiga, G. and Scharff, N., 2009. Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics 25, 231-262. https://doi.org/10.1111/j.1096-0031.2009.00249.x.
Ballesteros, J.A. and Hormiga, G., 2016. A new orthology assessment method for phylogenomic data: Unrooted Phylogenetic Orthology. Mol. Biol. Evol. 33, 2117-2134.
Beaulieu, J.M., Oliver, J.C. and O'Meara, B., 2017. corHMM: Analysis of Binary Character Evolution. R package version 1.22. https://CRAN.R-project.org/package=corHMM.
Benavides, L.R., Giribet, G. and Hormiga, G., 2017. Molecular phylogenetic analysis of “pirate spiders” (Araneae, Mimetidae) with the description of a new African genus and the first report of maternal care in the family. Cladistics 33, 375-405.
Blackledge, T.A., Scharff, N., Coddington, J.A., Szüts, T., Wenzel, J.W., Hayashi, C.Y. and Agnarsson, I., 2009. Reconstructing web evolution and spider diversification in the molecular era. Proc. Natl. Acad. Sci. U.S.A. 106, 5529-5234.
Bond, J.E., Garrison, N.L., Hamilton, C.A., Godwin, R.L., Hedin, M. and Agnarsson, I., 2014. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr. Biol. 24, 1765-1771.
Bott, R.A., Baumgartner, W., Bräunig, P., Menzel, F. and Joel, A.-C., 2017. Adhesion enhancement of cribellate capture threads by epicuticular waxes of the insect prey sheds new light on spider web evolution. Proc. R. Soc. B 284, 20170363.
Brewer, M.S., Carter, R.A., Croucher, P.J. and Gillespie, R.G., 2015. Shifting habitats, morphology, and selective pressures: developmental polyphenism in an adaptive radiation of Hawaiian spiders. Evolution 69, 162-178.
Capella-Gutiérrez, S., Silla-Martínez, J.M. and Gabaldón, T., 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.
Cheng, D.-Q. and Piel, H.W., 2018. The origins of the Psechridae: web-building lycosoid spiders. Mol. Phylogenet. Evol. 125, 213-219.
Coddington, J.A., Agnarsson, I., Hamilton, C.A. and Bond, J.E., 2019. Spiders did not repeatedly gain, but repeatedly lost, foraging webs. PeerJ 7, e6703.
Dimitrov, D., Benavides, L.R., Arnedo, M.A., Giribet, G., Griswold, C.E., Scharff, N. and Hormiga, G., 2017. Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial relationships of ecribellate orb-weaving spiders with a new family-rank. Cladistics 33, 221-250.
Dimitrov, D. and Hormiga, G., 2020. Spider diversification through space and time. Annu. Rev. Entomol. 66. https://doi.org/10.1146/annurevento-061520-083414.
Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M.A., Álvarez-Padilla, F. and Hormiga, G., 2012. Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proc. R. Soc. B 279, 1341-1350.
van Dongen, S., 2000. Graphs clustering by flow simulation. Ph.D. thesis. University of Utrecht, Utrecht.
Eberhard, W.G., 1928. Behavioral characters for the higher classification of orb-weaving spiders. Evolution 36, 1067-1095.
Eberhard, W.G., 2018. Modular patterns in behavioural evolution: webs derived from orbs. Behaviour 155, 1-35.
Eberhard, W.G. and Hazzi, N.A., 2017. Web building and prey wrapping behavior of Aglaoctenus castaneus (Araneae: Lycosidae: Sosippinae). J. Arachnol. 45, 177-197.
Eberle, J., Dimitrov, D., Valdez-Mondragón, A. and Huber, B.A., 2018. Microhabitat change drives diversification in pholcid spiders. BMC Evol. Biol. 18, 1-13.
Enright, A.J., van Dongen, S. and Ouzounis, C.A., 2002. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575-1584.
Faircloth, B.C., 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786-788.
Fernández, R., Hormiga, G. and Giribet, G., 2014. Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Curr. Biol. 24, 1772-1777.
Fernández, R., Kallal, R.J., Dimitrov, D., Ballesteros, J.A., Arnedo, M.A., Giribet, G. and Hormiga, G., 2018a. Phylogenomics, diversification dynamics, and comparative transcriptomics across the Spider Tree of Life. Curr. Biol. 28, 1489-1497.
Fernández, R., Kallal, R.J., Dimitrov, D., Ballesteros, J.A., Arnedo, M.A., Giribet, G. and Hormiga, G., 2018b. Phylogenomics, diversification dynamics, and comparative transcriptomics across the Spider Tree of Life (Correction). Curr. Biol. 28, 2190-2193.
Framenau, V.W., Scharff, N. and Harvey, M.S., 2010. Systematics of the Australian orb-weaving spider genus Demadiana with comments on the generic classification of the Arkyinae (Araneae: Araneidae). Invertebr. Syst. 24, 139-171.
French, A.S., Li, A.W., Meisner, S. and Torkkel, P.H., 2014. Upstream open reading frames and Kozak regions of assembled transcriptome sequences from the spider Cupiennius salei. Selection or chance? Gene 539, 203-208.
Gadagkar, S.R., Rosenberg, M.S. and Kumar, S., 2005. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. J. Exp. Zool. Part B 304b, 64-74.
Garrison, N.L., Rodriguez, J., Agnarsson, I., Coddington, J.A., Griswold, C.E., Hamilton, C.A., Hedin, M., Kocot, K.M., Ledford, J.M. and Bond, J.E., 2016. Spider phylogenomics: untangling the Spider Tree of Life. PeerJ 4, e1719.
Gillespie, R.G., 1991. Hawaiian spiders of the genus Tetragnatha: I. Spiny leg clade. J. Arachnol. 19, 174-209.
Goloboff, P. and Catalano, S., 2016. TNT, version 1.5, with a full implementation of phylogenetic morphometrics. Cladistics 32, 221-238.
Griswold, C., Coddington, J., Hormiga, G. and Scharff, N., 1998. Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zool. J. Linn. Soc. Lond. 123, 1-99.
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321.
Hedin, M., 2015. High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas. Mol. Ecol. 24, 346-361.
Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M.J. and Bond, J.E., 2019. Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ 7, e6864.
Hedin, M., Derkarabetian, S., Ramírez, M.J., Vink, C. and Bond, J.E., 2018. Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Sci. Rep. 8, 1636.
Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.-Q. and Vinh, L.S., 2018a. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522.
Hoang, D.T., Vinh, L.S., Flouri, T., Stamatakis, A., von Haeseler, A. and Minh, B.Q., 2018b. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evol. Biol. 18, 11.
Hormiga, G. and Griswold, C.E., 2014. Systematics, phylogeny, and evolution of orb-weaving spiders. Annu. Rev. Entomol. 59, 487-512.
Hormiga, G. and Scharff, N., 2020. The malkarid spiders of New Zealand (Araneae, Malkaridae). Invertebr. Syst. 34, 345-405.
Huang, D., Hormiga, G., Cai, C., Su, Yi, Yin, Z., Xia, F. and Giribet, G., 2018. Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils. Nat. Ecol. Evol. 2, 623-627.
Kallal, R.J., Fernández, R., Giribet, G. and Hormiga, G., 2018. A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. Mol. Phylogenet. Evol. 126, 129-140.
Kalyaanamoorthy, S., Minh, B.-Q., Wong, T.K.F., von Haeseler, A. and Jermiin, L.S., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589.
Katoh, K. and Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.
Kulkarni, S., Kallal, R.J., Wood, H., Dimitrov, D., Giribet, G. and Hormiga, G., 2020. Interrogating genomic-scale data to resolve recalcitrant nodes in the Spider Tree of Life. Mol. Biol. Evol. msaa251. https://doi.org/10.1093/molbev/msaa251.
Kulkarni, S.S., Wood, H.M., Lloyd, M. and Hormiga, G., 2019. Spider-specific probe set for ultraconserved elements offers new perspectives on the evolutionary history of spiders (Arachnida, Araneae). Mol. Ecol. Res. 20, 185-203.
Kumar, S., Filipski, A.J., Battistuzzi, F.U., Kosakovksy Pond, S.L. and Tamura, K., 2012. Statistics and truth in phylogenomics. Mol. Biol. Evol. 29, 457-472.
Kuntner, M., Hamilton, C.A., Cheng, R.-C., Gregorič, M., Lupse, N., Lokovsek, T., Lemmon, E.M., Lemmon, A.R., Agnarsson, I., Coddington, J.A. et al., 2019. Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism. Syst. Biol. 68, 555-572.
Laumer, C.E., Fernández, R., Lemer, S., Combosch, D., Kocot, K.M., Riesgo, A., Andrade, S.C.S., Sterrer, W., Sørensen, M.V. and Giribet, G., 2019. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. R. Soc. B 286, 20190831.
Lopardo, L., Giribet, G. and Hormiga, G., 2010. Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses-a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture. Cladistics 26, 1-52.
Magalhães, I.L.F., Azevedo, G.H.F., Michalik, P. and Ramírez, M.J., 2020. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. Biol. Rev. 95, 184-217.
Meng, X., Zhang, Y., Bao, H. and Liu, Z., 2015. Sequence analysis of insecticide action and detoxification-related genes in the insect pest natural enemy Pardosa pseudoannulata. PLoS One 10, e0125242.
Michalik, P., Kallal, R.J., Dederichs, T.M., Labarque, F.M., Hormiga, G., Giribet, G. and Ramírez, M.J., 2019. Phylogenomics and genital morphology of cave raptor spiders (Araneae, Trogloraptoridae) reveal an independent origin of a flow-through genital system. J. Zool. Syst. Evol. Res. 57, 737-747.
Minh, B.Q., Hanh, M.W. and Lanfear, R., 2020. New methods to calculate concordance factors for phylogenomic datasets. Mol. Biol. Evol. 37, 2727-2733.
Mirarab, S. and Warnow, T., 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, i44-i52. https://doi.org/10.1093/bioinformatics/btv234.
Nguyen, L.T., Schmidt, H.A., von Haeseler, A. and Minh, B.-Q., 2015. IQTREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.
Opatova, V., Hamilton, C.A., Hedin, M., Montes de Oca, L., Král, J. and Bond, J.E., 2020. Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data. Syst. Biol. 69, 671-707.
Opell, B.D., 2013. Cribellar thread. In: Nentwig, W. (Ed.) Spider Ecophysiology. Springer,Berlin, pp. 303-318.
Paradis, E. and Schliep, K., 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528.
Philippe, H., de Vienne, D.M., Ranwez, V., Roure, B., Baurain, D. and Delsuc, F., 2017. Pitfalls in supermatrix phylogenomics. Eur. J. Taxon. 283, 1-25.
Piacentini, L.N. and Ramírez, M.J., 2019. Hunting the wolf: a molecular phylogeny of the wolf spiders (Araneae, Lycosidae). Mol. Phylogenet. Evol. 136, 227-240.
R Core Team, 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Ramírez, M.J., Grismado, C.J., Ubick, D., Ovtcharenko, V.I., Cushing, P.E., Platnick, N.I., Wheeler, W.C., Prendini, L., Crowley, L.M. and Horner, N.V., 2019. Myrmecicultoridae, a new family of myrmecophilic spiders from the Chihuahuan Desert (Araneae, Entelegynae). Am. Mus. Novit. 3930, 1-24.
Ramírez, M.J., Magalhães, I.L.F., Derkarabetian, S., Ledford, J., Griswold, C.E., Wood, H.M. and Hedin, M., 2020. Sequence capture phylogenomics of true spiders reveals convergent evolution of respiratory systems. Syst. Biol. syaa043. https://doi.org/10.1093/sysbio/syaa043.
Rix, M.G., Cooper, S.J.B., Meusemann, K., Klopfstein, S., Harrison, S.E., Harvey, M.S. and Austin, A.D., 2017. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Mol. Phylogenet. Evol. 109, 302-320.
Robinson, D.F. and Foulds, L.R., 1981. Comparison of phylogenetic trees. Math. Biosci. 53, 131-147.
Sanggaard, K.W., Bechsgaard, J.S., Fang, X., Duan, J., Dyrlund, T.F., Gupta, V., Jiang, X., Cheng, L., Fan, D., Feng, Y. et al., 2014. Spider genomes provide insight into composition and evolution of venom and silk. Nat. Commun., 5, 3765.
Sayyari, E. and Mirarab, S., 2016. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Biol. Evol. 33, 1654-1668.
Scharff, N., Coddington, J.A., Blackledge, T.A., Agnarsson, I., Framenau, V., Szüts, T., Hayashi, C.Y. and Dimitrov, D., 2020. Phylogeny of the orb-weaving spider family Araneidae (Araneae, Araneoidea). Cladistics 36, 1-21.
Shao, L. and Li, S., 2018. Early Cretaceous greenhouse pumped higher taxa diversification in spiders. Mol. Phylogenet. Evol. 127, 146-155.
Sharma, P.P., Kaluziak, S.T., Pérez-Porro, A.R., González, V.L., Hormiga, G., Wheeler, W.C. and Giribet, G., 2014. Phylogenomic interrogation of arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 31, 2963-2984.
Shear, W.A., 1986. Spiders: Webs, Behavior, and Evolution. Stanford University Press, Stanford, CA, ISBN 0804712034 9780804712033.
Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. and Zdobnov, E.M., 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212.
Simmons, M.P. and Goloboff, P.A., 2014. Dubious resolution and support from published sparse supermatrices: the importance of thorough tree searches. Mol. Phylogenet. Evol. 78, 334348.
Smith, S.A. and O'Meara, B.C., 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689-2690.
Song, L. and Florea, L., 2015. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48.
Susko, E. and Roger, A.J., 2020. On the use of information criteria for model selection in phylogenetics. Mol. Biol. Evol. 37, 549-562.
Tamura, K., Battistuzzi, F.U., Billing-Ross, P., Murillo, O., Filipski, A. and Kumar, S., 2012. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. U.S.A. 109, 19333-19338.
Tan, G., Muffato, M., Ledergerber, C., Herrero, J., Goldman, N., Gil, M. and Dessimoz, C., 2015. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst. Biol. 64, 778-791.
Tarasov, S., 2019. Integration of anatomy ontologies and evo-devo using structured Markov models suggests a new framework for modeling discrete phenotypic traits. Syst. Biol. 68, 698-716.
Wang, B., Dunlop, J.A., Selden, P.A., Garwood, R.J., Shear, W.A., Müller, P. and Lei, X., 2018. Cretaceous arachnid Chimerarachne yingi gen. et. sp. nov. illuminates spider origins. Nat. Ecol. Evol. 2, 614-622.
Wheeler, W.C., Coddington, J.A., Crowley, L.M., Dimitrov, D., Goloboff, P.A., Griswold, C.E., Hormiga, G., Prendini, L., Ramírez, M.J., Sierwald, P. et al., 2017. The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33, 574-616.
Wolff, J.O., Paterno, G.B., Liprandi, D., Ramírez, M.J., Bosia, F., van der Meijden, A., Michalik, P., Smith, H.M., Jones, B.R., Ravelo, A.M. et al., 2019. Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages. Evolution 73, 2122-2134.
Wood, H.M., González, V.L., Lloyd, M., Coddington, J.A. and Scharff, N., 2018. Next-generation museum genomics: phylogenetic relationships among palpimanoid spiders using sequence capture techniques (Araneae: Palpimanoidea). Mol. Phylogenet. Evol. 127, 907-918.
Wood, H.M., Griswold, C.E. and Gillespie, R.G., 2012. Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into the evolution of the “neck” and predatory behaviours of the superfamily Palpimanoidea. Cladistics 28, 598-626.
World Spider Catalog, 2020. World Spider Catalog. Version 20.5. Natural History Museum Bern. Available from: http://wsc.nmbe.ch (accessed on 8 January 2020). doi: https://doi.org/10.24436/2.
Wunderlich, J., 2008. The dominance of ancient spider families of the Araneae: Haplogynae in the Cretaceous and the late diversification of the advanced ecribellate spiders of the Entelegynae in the Cretaceous-Tertiary boundary extinction events, with descriptions of new families. Beiträge zur Araneologie 5(524-674), 802-813.
Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586-1591.
Zhang, Z.-Q., 2011. Animal biodiversity: an introduction to higher-level classification and taxonomic richness. Zootaxa 12, 7-12.
Zhao, Y.J., Zeng, Y., Chen, L., Dong, Y. and Wang, W., 2014. Analysis of transcriptomes of three orb-web spider species reveals gene profiles involved in silk and toxin. Insect Sci. 21, 687-698.
المشرفين على المادة: 0 (Insect Proteins)
تواريخ الأحداث: Date Created: 20210903 Date Completed: 20220124 Latest Revision: 20220124
رمز التحديث: 20221213
DOI: 10.1111/cla.12439
PMID: 34478199
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-0031
DOI:10.1111/cla.12439