دورية أكاديمية

Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus.

التفاصيل البيبلوغرافية
العنوان: Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus.
المؤلفون: de Araújo HL; Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil., Martins BP; Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil., Vicente AM; Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil., Lorenzetti APR; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil., Koide T; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil., Marques MV; Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
المصدر: Microbiology spectrum [Microbiol Spectr] 2021 Sep 03; Vol. 9 (1), pp. e0071021. Date of Electronic Publication: 2021 Aug 25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: ASM Press Country of Publication: United States NLM ID: 101634614 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2165-0497 (Electronic) Linking ISSN: 21650497 NLM ISO Abbreviation: Microbiol Spectr Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : ASM Press, 2013-
مواضيع طبية MeSH: Gene Expression Regulation, Bacterial*, Bacterial Proteins/*metabolism , Caulobacter crescentus/*metabolism , Iron/*metabolism , Repressor Proteins/*metabolism, Bacterial Proteins/genetics ; Caulobacter crescentus/chemistry ; Caulobacter crescentus/genetics ; Cold Temperature ; Ion Transport ; RNA, Bacterial/genetics ; RNA, Bacterial/metabolism ; RNA, Untranslated/genetics ; RNA, Untranslated/metabolism ; Regulon ; Repressor Proteins/genetics
مستخلص: In this study, we characterize the response of the free-living oligotrophic alphaproteobacterium Caulobacter crescentus to low temperatures by global transcriptomic analysis. Our results showed that 656 genes were upregulated and 619 were downregulated at least 2-fold after a temperature downshift. The identified differentially expressed genes (DEG) belong to several functional categories, notably inorganic ion transport and metabolism, and a subset of these genes had their expression confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Several genes belonging to the ferric uptake regulator (Fur) regulon were downregulated, indicating that iron homeostasis is relevant for adaptation to cold. Several upregulated genes encode proteins that interact with nucleic acids, particularly RNA: cspA , cspB , and the DEAD box RNA helicases rhlE , dbpA , and rhlB . Moreover, 31 small regulatory RNAs (sRNAs), including the cell cycle-regulated noncoding RNA (ncRNA) CcnA, were upregulated, indicating that posttranscriptional regulation is important for the cold stress response. Interestingly, several genes related to transport were upregulated under cold stress, including three AcrB-like cation/multidrug efflux pumps, the nitrate/nitrite transport system, and the potassium transport genes kdpFABC . Further characterization showed that kdpA is upregulated in a potassium-limited medium and at a low temperature in a SigT-independent way. kdpA mRNA is less stable in rho and rhlE mutant strains, but while the expression is positively regulated by RhlE, it is negatively regulated by Rho. A kdpA -deleted strain was generated, and its viability in response to osmotic, acidic, or cold stresses was determined. The implications of such variation in the gene expression for cold adaptation are discussed. IMPORTANCE Low-temperature stress is an important factor for nucleic acid stability and must be circumvented in order to maintain the basic cell processes, such as transcription and translation. The oligotrophic lifestyle presents further challenges to ensure the proper nutrient uptake and osmotic balance in an environment of slow nutrient flow. Here, we show that in Caulobacter crescentus, the expression of the genes involved in cation transport and homeostasis is altered in response to cold, which could lead to a decrease in iron uptake and an increase in nitrogen and high-affinity potassium transport by the Kdp system. This previously uncharacterized regulation of the Kdp transporter has revealed a new mechanism for adaptation to low temperatures that may be relevant for oligotrophic bacteria.
References: Appl Environ Microbiol. 2013 Dec;79(23):7281-9. (PMID: 24056458)
Nucleic Acids Res. 2007;35(2):506-16. (PMID: 17169986)
Curr Microbiol. 1995 Apr;30(4):193-9. (PMID: 7765892)
RNA Biol. 2010 Nov-Dec;7(6):788-95. (PMID: 21045540)
RNA Biol. 2019 Jun;16(6):719-726. (PMID: 30870072)
Mol Microbiol. 2001 Mar;39(5):1321-9. (PMID: 11251847)
Nature. 1996 May 9;381(6578):169-72. (PMID: 8610017)
Life (Basel). 2018 Mar 13;8(1):. (PMID: 29534000)
J Bacteriol. 2010 Feb;192(3):819-33. (PMID: 19948804)
J Biol Chem. 1997 Jan 3;272(1):196-202. (PMID: 8995247)
FEMS Microbiol Rev. 2000 Jul;24(3):263-90. (PMID: 10841973)
J Bacteriol. 2017 Jun 13;199(13):. (PMID: 28396352)
FEBS J. 2008 Aug;275(15):3772-82. (PMID: 18565105)
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10978-10987. (PMID: 31076551)
Front Microbiol. 2018 Apr 24;9:763. (PMID: 29740411)
Front Microbiol. 2017 Apr 24;8:570. (PMID: 28484428)
J Bacteriol. 2012 Dec;194(23):6507-17. (PMID: 23002229)
J Bacteriol. 2007 Aug;189(15):5738-48. (PMID: 17545280)
J Proteome Res. 2014 Apr 4;13(4):1896-904. (PMID: 24564473)
BMC Genomics. 2013 Aug 13;14:549. (PMID: 23941329)
Microbiol Spectr. 2018 Jul;6(4):. (PMID: 30051798)
PLoS Biol. 2022 Feb 22;20(2):e3001528. (PMID: 35192605)
Mol Microbiol. 2011 May;80(3):695-714. (PMID: 21338423)
J Bacteriol. 2004 Oct;186(20):7007-14. (PMID: 15466053)
EMBO J. 2001 Apr 2;20(7):1681-91. (PMID: 11285232)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Int J Mol Sci. 2019 Jan 22;20(3):. (PMID: 30678142)
J Bacteriol. 1977 Oct;132(1):294-301. (PMID: 334726)
Nucleic Acids Res. 2011 Mar;39(4):1449-59. (PMID: 20952404)
RNA Biol. 2020 Jun;17(6):794-804. (PMID: 32070211)
Nucleic Acids Res. 2009 Aug;37(14):4812-25. (PMID: 19520766)
Sci Prog. 2003;86(Pt 1-2):9-75. (PMID: 12838604)
PLoS One. 2014 May 02;9(5):e96552. (PMID: 24794099)
Nat Commun. 2016 Apr 25;7:11423. (PMID: 27109061)
Int J Med Microbiol. 2013 Jul;303(5):217-29. (PMID: 23660175)
Mol Biosyst. 2016 Oct 18;12(11):3254-3258. (PMID: 27754509)
Mol Microbiol. 2003 Jun;48(5):1253-65. (PMID: 12787353)
J Bacteriol. 1996 Aug;178(15):4611-9. (PMID: 8755892)
J Bacteriol. 2004 Sep;186(17):5603-13. (PMID: 15317764)
Int J Food Microbiol. 2011 Mar 15;146(1):23-30. (PMID: 21367479)
FEMS Microbiol Lett. 2008 Nov;288(2):178-85. (PMID: 18801049)
J Mol Microbiol Biotechnol. 1999 Nov;1(2):193-202. (PMID: 10943550)
Foodborne Pathog Dis. 2010 Jul;7(7):775-83. (PMID: 20184451)
Appl Environ Microbiol. 2012 Nov;78(22):7866-75. (PMID: 22941081)
J Bacteriol. 2014 Jul;196(14):2514-25. (PMID: 24794566)
PLoS Genet. 2015 Jan 08;11(1):e1004831. (PMID: 25569173)
J Bacteriol. 2007 Aug;189(16):5808-15. (PMID: 17557820)
J Bacteriol. 1987 May;169(5):2092-5. (PMID: 3553157)
J Biotechnol. 1997 Dec 17;59(1-2):117-26. (PMID: 9487720)
Cell Mol Life Sci. 2007 Jun;64(12):1457-70. (PMID: 17437059)
Mol Microbiol. 1995 May;16(4):699-708. (PMID: 7476164)
Nucleic Acids Res. 2004 May 17;32(9):2751-9. (PMID: 15148362)
Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):8966-8971. (PMID: 30126985)
Mol Microbiol. 1997 Jan;23(2):355-64. (PMID: 9044269)
Mol Microbiol. 2011 Jun;80(6):1598-612. (PMID: 21564331)
Genes Cells. 2012 Oct;17(10):850-74. (PMID: 22957931)
J Bacteriol. 2006 Jan;188(1):240-8. (PMID: 16352840)
Appl Environ Microbiol. 2004 May;70(5):2912-8. (PMID: 15128551)
Arch Microbiol. 2010 Sep;192(9):747-58. (PMID: 20607520)
Biocontrol Sci. 2010 Jun;15(2):57-62. (PMID: 20616433)
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10234-10245. (PMID: 32341157)
Mol Microbiol. 2011 Jun;80(5):1313-25. (PMID: 21435040)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
Sci Signal. 2018 Sep 04;11(546):. (PMID: 30181241)
J Bacteriol. 2011 Apr;193(7):1552-62. (PMID: 21296969)
Methods Enzymol. 1991;204:372-84. (PMID: 1658564)
J Bacteriol. 1982 Sep;151(3):1269-78. (PMID: 7107555)
Genes Dev. 2012 Dec 1;26(23):2621-33. (PMID: 23207917)
FEMS Microbiol Lett. 2011 May;318(1):47-54. (PMID: 21306427)
Cell Mol Life Sci. 2002 Nov;59(11):1902-13. (PMID: 12530521)
J Biol Chem. 2002 Mar 1;277(9):7239-45. (PMID: 11756430)
EMBO J. 1996 Aug 1;15(15):3993-4000. (PMID: 8670904)
BMC Microbiol. 2013 Apr 11;13:79. (PMID: 23578014)
J Biosci. 2007 Apr;32(3):559-68. (PMID: 17536175)
Nucleic Acids Res. 2012 Nov 1;40(20):10053-63. (PMID: 22941644)
J Mol Biol. 2003 Aug 15;331(3):527-39. (PMID: 12899826)
J Biol Chem. 2002 Apr 19;277(16):14186-93. (PMID: 11830594)
Microbiology (Reading). 2013 Dec;159(Pt 12):2437-2443. (PMID: 24068238)
J Biol Chem. 2002 Nov 29;277(48):46706-11. (PMID: 12324471)
BMC Microbiol. 2016 Apr 12;16:66. (PMID: 27072651)
فهرسة مساهمة: Keywords: Caulobacter crescentus; cation homeostasis; cold adaptation; potassium transport; transcriptomic analysis
المشرفين على المادة: 0 (Bacterial Proteins)
0 (RNA, Bacterial)
0 (RNA, Untranslated)
0 (Repressor Proteins)
0 (ferric uptake regulating proteins, bacterial)
E1UOL152H7 (Iron)
تواريخ الأحداث: Date Created: 20210904 Date Completed: 20220117 Latest Revision: 20231019
رمز التحديث: 20231019
مُعرف محوري في PubMed: PMC8552747
DOI: 10.1128/Spectrum.00710-21
PMID: 34479415
قاعدة البيانات: MEDLINE
الوصف
تدمد:2165-0497
DOI:10.1128/Spectrum.00710-21