دورية أكاديمية

Cross-sectional associations between adipose tissue depots and areal bone mineral density in the UK Biobank imaging study.

التفاصيل البيبلوغرافية
العنوان: Cross-sectional associations between adipose tissue depots and areal bone mineral density in the UK Biobank imaging study.
المؤلفون: Bland VL; Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12401 E 17th Ave Rm 368, Aurora, CO, 80045-2589, USA. victoria.bland@cuanschutz.edu., Klimentidis YC; Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, 85724, USA., Bea JW; Department of Health Promotion Sciences, University of Arizona, Tucson, AZ, 85724, USA.; The University of Arizona Cancer Center, Tucson, AZ, 85724, USA., Roe DJ; Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, 85724, USA.; The University of Arizona Cancer Center, Tucson, AZ, 85724, USA., Funk JL; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85721, USA.; Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA., Going SB; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85721, USA.
المصدر: Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA [Osteoporos Int] 2022 Feb; Vol. 33 (2), pp. 391-402. Date of Electronic Publication: 2021 Sep 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: England NLM ID: 9100105 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1433-2965 (Electronic) Linking ISSN: 0937941X NLM ISO Abbreviation: Osteoporos Int Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Springer International, c1990-
مواضيع طبية MeSH: Biological Specimen Banks* , Bone Density*, Absorptiometry, Photon ; Adipose Tissue ; Cross-Sectional Studies ; Female ; Femur Neck/diagnostic imaging ; Humans ; Lumbar Vertebrae/diagnostic imaging ; Male ; United Kingdom/epidemiology
مستخلص: The relationship between obesity and osteoporosis is poorly understood. In this study, we assessed the association between adiposity and bone. The fat-bone relationship was dependent on sex, body mass index classification, and menopausal status. Results highlight the importance of accounting for direct measures of adiposity (beyond BMI) and menopause status.
Introduction: Assess the relationship between direct measures of adiposity (total body fat mass, visceral adipose tissue, and abdominal subcutaneous adipose tissue) with the whole body and clinically relevant bone sites of the lumbar spine, and femoral neck areal bone mineral density (aBMD) in men and women.
Methods: This cross-sectional analysis was conducted utilizing de-identified data from the UK Biobank on participants (n = 3674) with available dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) data. Sex-stratified multiple linear regression was used to assess the relationship between adiposity measures and aBMD outcomes, controlling for age, race, total body lean mass (DXA), height, BMI class, physical activity, smoking, menopausal status (women), and hormone use (women).
Results: In men, significant interactions were observed between measures of adiposity and BMI on aBMD for the whole body and lumbar spine. Interactions indicated a positive relationship between adiposity and aBMD in men classified as normal weight, but an inverse relationship in men with elevated BMI. In women, significant interactions between adiposity measures and menopausal status were observed primarily for the whole body and femoral neck aBMD bone outcomes which indicated a negative relationship between adiposity and aBMD in premenopausal women, but a positive relationship in postmenopausal women.
Conclusion: Total body adiposity, abdominal subcutaneous adipose tissue, and visceral adipose tissue were all significantly associated with aBMD in both men and women. The strength and direction of association were dependent on sex, BMI classification, and menopausal status (women).
(© 2021. International Osteoporosis Foundation and National Osteoporosis Foundation.)
References: Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945):766–781. https://doi.org/10.1016/S0140-6736(14)60460-8. (PMID: 10.1016/S0140-6736(14)60460-8248808304624264)
World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organization Technical Report Series volume 894:i-xii, 1-253.
Consensus Development Conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650. https://doi.org/10.1016/0002-9343(93)90218-e. (PMID: 10.1016/0002-9343(93)90218-e)
Holroyd C, Cooper C, Dennison E (2008) Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab 22(5):671–685. https://doi.org/10.1016/j.beem.2008.06.001. (PMID: 10.1016/j.beem.2008.06.00119028351)
World Health Organization Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organization technical report series 843:1–129.
Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286(22):2815–2822. https://doi.org/10.1001/jama.286.22.2815. (PMID: 10.1001/jama.286.22.281511735756)
Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8(5):567–573. https://doi.org/10.1002/jbmr.5650080507. (PMID: 10.1002/jbmr.56500805078511983)
Looker A, Flegal K, Lr M (2007) Impact of increased overweight on the projected prevalence of osteoporosis in older women. Osteoporos Int 18(3):307–313. https://doi.org/10.1007/s00198-006-0241-8. (PMID: 10.1007/s00198-006-0241-817053871)
Pirro M, Fabbriciani G, Leli C, Callarelli L, Manfredelli MR, Fioroni C, Mannarino MR, Scarponi AM, Mannarino E (2010) High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone and Miner Metab 28(1):88–93. https://doi.org/10.1007/s00774-009-0108-0. (PMID: 10.1007/s00774-009-0108-0)
Greco E, Fornari R, Rossi F, Santiemma V, Prossomariti G, Annoscia C, Aversa A, Brama M, Marini M, Donini L (2010) Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int J Clin Pract 64(6):817–820. https://doi.org/10.1111/j.1742-1241.2009.02301.x. (PMID: 10.1111/j.1742-1241.2009.02301.x20518955)
Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL (2013) Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 17(5):644–656. https://doi.org/10.1016/j.cmet.2013.03.008. (PMID: 10.1016/j.cmet.2013.03.008235831683942783)
Karpe F, Pinnick KE (2015) Biology of upper-body and lower-body adipose tissue—link to whole-body phenotypes. Nat Rev Endocrinol 11(2):90. https://doi.org/10.1038/nrendo.2014.185. (PMID: 10.1038/nrendo.2014.18525365922)
Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Investig 117(1):175–184. https://doi.org/10.1172/JCI29881. (PMID: 10.1172/JCI29881172007171716210)
Prisby RD, Swift JM, Bloomfield SA, Hogan HA, Delp MD (2008) Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat. J Endocrinol 199(3):379–388. https://doi.org/10.1677/joe-08-0046. (PMID: 10.1677/joe-08-004618755885)
Cauley JA, Danielson ME, Boudreau RM, Forrest KY, Zmuda JM, Pahor M, Tylavsky FA, Cummings SR, Harris TB, Newman AB (2007) Inflammatory markers and incident fracture risk in older men and women: the Health Aging and Body Composition Study. J Bone Miner Res 22(7):1088–1095. https://doi.org/10.1359/jbmr.070409. (PMID: 10.1359/jbmr.07040917419681)
Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97. https://doi.org/10.1038/nri2921. (PMID: 10.1038/nri2921212529893518031)
Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867. https://doi.org/10.1038/nature0548. (PMID: 10.1038/nature0548)
Katzmarzyk PT, Barreira TV, Harrington DM, Staiano AE, Heymsfield SB, Gimble JM (2012) Relationship between abdominal fat and bone mineral density in white and African American adults. Bone 50(2):576–579. https://doi.org/10.1016/j.bone.2011.04.012. (PMID: 10.1016/j.bone.2011.04.01221549867)
Luo J, Lee RY (2020) How does obesity influence the risk of vertebral fracture? Findings from the UK Biobank participants. JBMR plus 4(5):e10358. https://doi.org/10.1002/jbm4.10358. (PMID: 10.1002/jbm4.10358323826917202417)
Hind K, Pearce M, Birrell F (2017) Total and visceral adiposity are associated with prevalent vertebral fracture in women but not men at age 62 years: the Newcastle Thousand Families Study. J Bone Miner Res 32(5):1109–1115. https://doi.org/10.1002/jbmr.3085. (PMID: 10.1002/jbmr.308528261864)
Zhu K, Hunter M, James A, Lim E, Cooke B, Walsh J (2020) Relationship between visceral adipose tissue and bone mineral density in Australian baby boomers. Osteoporos Int 31(12):2439–2448. https://doi.org/10.1007/s00198-020-05556-0. (PMID: 10.1007/s00198-020-05556-032719992)
Chan GC, Divers J, Russell GB, Langefeld CD, Wagenknecht LE, Xu J, Smith SC, Bowden DW, Register TC, Carr JJ (2018) Adipose tissue depot volume relationships with spinal. PLoS One 13(1):e0191674. (PMID: 10.1371/journal.pone.0191674)
Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Harrington LM, Breggia A, Rosen CJ, Miller KK (2011) Determinants of bone mineral density in obese premenopausal women. Bone 48(4):748–754. https://doi.org/10.1016/j.bone.2010.12.011. (PMID: 10.1016/j.bone.2010.12.01121195217)
Salimzadeh A, Abolhasani M, Sedaghattalab M, Moghadasi M (2017) Relationship between bone density and abdominal visceral fat in premenopausal overweight and obese Iranian women aged 30–50 years. Int J Rheum Dis 20(5):555–560. https://doi.org/10.1111/1756-185X.12400. (PMID: 10.1111/1756-185X.1240024832545)
von Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Connor E (2007) Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int 18(10):1337–1344. https://doi.org/10.1007/s00198-007-0385-1. (PMID: 10.1007/s00198-007-0385-1)
National Health Services (2018) Menopause. https://www.nhs.uk/conditions/menopause/ . Accessed May 4 2021.
World Health Organization (2020) What is overweight and obesity? https://www.who.int/dietphysicalactivity/childhood_what/en/ . Accessed 17 Sept 2020.
West J, Leinhard OD, Romu T, Collins R, Garratt S, Bell JD, Borga M, Thomas L (2016) Feasibility of MR-based body composition analysis in large scale population studies. PLoS ONE 11(9):e0163332. https://doi.org/10.1371/journal.pone.0163332. (PMID: 10.1371/journal.pone.0163332276621905035023)
Linge J, Borga M, West J, Tuthill T, Miller MR, Dumitriu A, Thomas EL, Romu T, Tunón P, Bell JD (2018) Body composition profiling in the UK Biobank Imaging Study. Obesity 26(11):1785–1795. https://doi.org/10.1002/oby.22210. (PMID: 10.1002/oby.2221029785727)
Davis SR, Castelo-Branco C, Chedraui P, Lumsden M, Nappi R, Shah D, Villaseca P (2012) Understanding weight gain at menopause. Climacteric 15(5):419–429. https://doi.org/10.3109/13697137.2012.707385. (PMID: 10.3109/13697137.2012.70738522978257)
Dolan E, Swinton PA, Sale C, Healy A, O’Reilly J (2017) Influence of adipose tissue mass on bone mass in an overweight or obese population: systematic review and meta-analysis. Nutr Rev 75(10):858–870. https://doi.org/10.1093/nutrit/nux046. (PMID: 10.1093/nutrit/nux04629028271)
Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29(5):535–559. https://doi.org/10.1210/er.2007-0036. (PMID: 10.1210/er.2007-0036184367062726838)
Berryman DE, Glad CA, List EO, Johannsson G (2013) The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol 9(6):346–356. https://doi.org/10.1038/nrendo.2013.64. (PMID: 10.1038/nrendo.2013.6423568441)
Bredella MA, Gerweck AV, Barber LA, Breggia A, Rosen CJ, Torriani M, Miller KK (2014) Effects of growth hormone administration for 6 months on bone turnover and bone marrow fat in obese premenopausal women. Bone 62:29–35. https://doi.org/10.1016/j.bone.2014.01.022. (PMID: 10.1016/j.bone.2014.01.022245083864014200)
Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60. https://doi.org/10.1016/j.arr.2014.02.007. (PMID: 10.1016/j.arr.2014.02.00724632496)
Khosla S, Melton LJ III, Riggs BL (2011) The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26(3):441–451. https://doi.org/10.1002/jbmr.262. (PMID: 10.1002/jbmr.26220928874)
معلومات مُعتمدة: MC_PC_17228 United Kingdom MRC_ Medical Research Council; MC_QA137853 United Kingdom MRC_ Medical Research Council
فهرسة مساهمة: Keywords: Adiposity; Aging; Bone; DXA; Menopause; Visceral fat
تواريخ الأحداث: Date Created: 20210907 Date Completed: 20220207 Latest Revision: 20220223
رمز التحديث: 20221213
DOI: 10.1007/s00198-021-06140-w
PMID: 34490505
قاعدة البيانات: MEDLINE
الوصف
تدمد:1433-2965
DOI:10.1007/s00198-021-06140-w