دورية أكاديمية

Targeting immune checkpoints in gynecologic cancer: updates & perspectives for pathologists.

التفاصيل البيبلوغرافية
العنوان: Targeting immune checkpoints in gynecologic cancer: updates & perspectives for pathologists.
المؤلفون: Mills AM; Department of Pathology, Division of Anatomic Pathology, University of Virginia, Charlottesville, VA, USA. amm7r@virginia.edu., Bullock TN; Department of Pathology, Division of Anatomic Pathology, University of Virginia, Charlottesville, VA, USA., Ring KL; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Virginia, Charlottesville, VA, USA.
المصدر: Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc [Mod Pathol] 2022 Feb; Vol. 35 (2), pp. 142-151. Date of Electronic Publication: 2021 Sep 07.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Elsevier Inc Country of Publication: United States NLM ID: 8806605 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1530-0285 (Electronic) Linking ISSN: 08933952 NLM ISO Abbreviation: Mod Pathol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : [New York] : Elsevier Inc.
Original Publication: Baltimore, MD : Williams & Wilkins, c1988-
مواضيع طبية MeSH: Neoplasms*/genetics , Pathologists*, B7-H1 Antigen/metabolism ; Biomarkers, Tumor/genetics ; Biomarkers, Tumor/metabolism ; Female ; Humans ; Immunohistochemistry ; Microsatellite Instability
مستخلص: Checkpoint inhibitor-based immunotherapy is increasingly used in the treatment of gynecologic cancers, and most often targets the PD-1/PD-L1 axis. Pathologists should be familiar with the biomarkers required to determine candidacy for these treatments based on existing FDA approvals, including mismatch repair protein immunohistochemistry, microsatellite instability testing, tumor mutation burden testing, and PD-L1 immunohistochemistry. This review summarizes the rationale behind these treatments and their associated biomarkers and delivers guidance on how to utilize and readout these tests. It also introduces additional biomarkers which may provide information regarding immunotherapeutic vulnerability in the future such as neoantigen load; POLE mutation status; and immunohistochemical expression of immunosuppressive checkpoints like LAG-3, TIM-3, TIGIT, and VISTA; immune-activating checkpoints such as CD27, CD40, CD134, and CD137; enzymes such as IDO-1 and adenosine-related compounds; and MHC class I.
(© 2021. The Author(s), under exclusive licence to United States & Canadian Academy of Pathology.)
References: Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002). (PMID: 12407406)
Reiss, K. A., Forde, P. M. & Brahmer, J. R. Harnessing the power of the immune system via blockade of PD-1 and PD-L1: a promising new anticancer strategy. Immunotherapy 6, 459–475 (2014). (PMID: 24815784)
Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014). (PMID: 247147714185001)
Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl J. Med. 366, 2443–2454 (2012). (PMID: 226581273544539)
Bourla, A. B. & Zamarin, D. Immunotherapy: new strategies for the treatment of gynecologic malignancies. Oncology 30, 59–66,69 (2016). (PMID: 26791846)
Murali, R., Grisham, R. N. & Soslow, R. A. The roles of pathology in targeted therapy of women with gynecologic cancers. Gyn. Oncol. 148, 213–221 (2018).
Gadducci, A. & Guerrieri, M. E. Immune checkpoint inhibitors in gynecological cancers: update of literature and perspectives of clinical research. Anticancer Res. 37, 5955–5965 (2017). (PMID: 29061774)
Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001). (PMID: 11244047)
Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012). (PMID: 224378704856023)
Higuchi, T. et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol. Res. 3, 1257–1268 (2015). (PMID: 261383354984269)
Robert, C. et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384, 1109–1117 (2014). (PMID: 25034862)
Garon, E. B. et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N. Engl J. Med. 372, 2018–2028 (2015). (PMID: 25891174)
Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl J. Med. 376, 1015–1026 (2017). (PMID: 282120605635424)
Le, D. T. et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015). (PMID: 260282554481136)
Le, D. T. et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science 28, 409–413 (2017).
Ott, P. A. et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1–positive endometrial cancer: results from the KEYNOTE-028 study. J. Clin. Oncol. 35, 2535–2541 (2017). (PMID: 28489510)
Makker, V. et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 20, 711–718 (2019). (PMID: 30922731)
Frenel, J. S. et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol. 35, 4035–4041 (2017). (PMID: 29095678)
Chung, H. C. et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 37, 1470–1478 (2019). (PMID: 30943124)
Shields, L. B. E. & Gordinier, M. E. Pembrolizumab in recurrent squamous cell carcinoma of the vulva: case report and review of the literature. Gynecol. Obstet. Invest. 84, 94–98 (2019). (PMID: 30016784)
Bellone, S. et al. Exceptional response to pembrolizumab in a metastatic, chemotherapy/radiation-resistant ovarian cancer patient harboring a PD-L1-genetic rearrangement. Clin. Cancer Res. 24, 3282–3291 (2018). (PMID: 293519206050068)
Hamanishi, J. et al. Safety and antitumor activity of Anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33, 4015–4022 (2015). (PMID: 26351349)
You, B. et al. Avelumab in patients with gestational trophoblastic tumors with resistance to single-agent chemotherapy: cohort A of the TROPHIMMUN Phase II trial. J. Clin. Oncol. 38, 3129–3137 (2020). (PMID: 327167407499607)
Ben-Ami, E. et al. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: results of a phase 2 study. Cancer 123, 3285–3290 (2017). (PMID: 28440953)
D’Angelo, S. P. et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 19, 416–426 (2018). (PMID: 293709926126546)
Tawbi, H. A. et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18, 1493–1501 (2017). (PMID: 289886467939029)
Groisberg, R. et al. Characteristics and outcomes of patients with advanced sarcoma enrolled in early phase immunotherapy trials. J. Immunother Cancer 5, 100 (2017). (PMID: 292544985735899)
Zhao, P., Li, L., Jiang, X. & Li, Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J. Hematol. Oncol. 12, 54 (2019). (PMID: 311514826544911)
Rousseau, B. J. et al. 526O high activity of nivolumab in patients with pathogenic exonucleasic domain POLE (edPOLE) mutated Mismatch Repair proficient (MMRp) advanced tumours. Ann. Oncol. 31, S463 (2020).
Santin, A. D. et al. Regression of chemotherapy-resistant polymerase epsilon (POLE) ultra-mutated and MSH6 hyper-mutated endometrial tumors with nivolumab. Clin. Cancer Res. 22, 5682–5687 (2016). (PMID: 274861765135588)
Marcus, L., Lemery, S. J., Keegan, P. & Pazdur, R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 25, 3753–3758 (2019). (PMID: 30787022)
Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020). (PMID: 32919526)
FDA approves pembrolizumab for adults and children with TMB-H solid tumors. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors . Accessed 31 Dec 2020.
FDA Approves VENTANA MMR RxDx as Companion Diagnostic for Dostarlimab in Endometrial Cancer. https://www.onclive.com/view/fda-approves-ventana-mmr-rxdx-as-companion-diagnostic-for-dostarlimab-in-endometrial-cancer . Accessed 11 May 2021.
FDA approves pembrolizumab for advanced cervical cancer with disease progression during or after chemotherapy. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm610572.htm . Accessed 7 May 2021.
Howitt, B. E. et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 1, 1319–1323 (2015). (PMID: 26181000)
Sloan, E. A., Ring, K. L., Willis, B. C., Modesitt, S. C. & Mills, A. M. PD-L1 expression in mismatch repair-deficient endometrial carcinomas, including lynch syndrome-associated and MLH1 promoter hypermethylated tumors. Am. J. Surg. Pathol. 41, 326–333 (2017). (PMID: 27984238)
Chinn, Z., Stoler, M. H. & Mills, A. M. PD-L1 and IDO expression in cervical and vulvar invasive and intraepithelial squamous neoplasias: implications for combination immunotherapy. Histopathology 74, 256–268 (2019). (PMID: 30067880)
Friedman, L. A., Ring, K. L. & Mills, A. M. LAG-3 and GAL-3 in endometrial carcinoma: emerging candidates for immunotherapy. Int. J. Gyn. Pathol. 39, 203–212 (2020).
Moore, M., Ring, K. L. & Mills, A. M. TIM-3 in endometrial carcinomas: an immunotherapeutic target expressed by mismatch repair-deficient and intact cancers. Mod. Pathol. 32, 1168–1179 (2019). (PMID: 30926882)
Ledford, H. Promising cancer drug hits snags. Nature 544, 13–14 (2018).
MMR and MSI testing in patients being considered for checkpoint inhibitor therapy. https://www.cap.org/protocols-and-guidelines/cap-guidelines/upcoming-cap-guidelines/mmr-and-msi-testing-in-patients-being-considered-for-checkpoint-inhibitor-therapy . Accessed 7 May 2021.
CAP Opens Comment Period for MMR/MSI testing advancing care for patients with cancer. https://www.cap.org/news/2020/cap-opens-comment-period-for-mmr-msi-testing-advancing-care-for-patients-with-cancer . Accessed 7 May 2021.
Wu, X. et al. Minimal microsatellite shift in microsatellite instability high endometrial cancer: a significant pitfall in diagnostic interpretation. Mod. Pathol. 32, 650–658 (2019). (PMID: 30443012)
de Leeuw, W. J. et al. Prediction of a mismatch repair gene defect by microsatellite instability and immunohistochemical analysis in endometrial tumours from HNPCC patients. J. Pathol. 192, 328–335 (2000). (PMID: 11054716)
Watkins, J. C., Nucci, M. R., Ritterhouse, L. L., Howitt, B. E. & Sholl, L. M. Unusual mismatch repair immunohistochemical patterns in endometrial carcinoma. Am. J. Surg. Pathol. 40, 909–916 (2016). (PMID: 27186853)
Mills, A. M. et al. Lynch syndrome screening should be considered for all patients with newly diagnosed endometrial cancer. Am. J. Surg. Pathol. 38, 1501–1509 (2014). (PMID: 252297684361228)
Mills, A. M. & Longacre, T. A. Lynch syndrome screening in the gynecologic tract: current state of the art. Am. J. Surg. Pathol. 40, e35–e44 (2016). (PMID: 26872009)
Leskela, S. et al. Mismatch repair deficiency in ovarian carcinoma: frequency, causes, and consequences. Am. J. Surg. Pathol. 44, 649–656 (2020). (PMID: 32294063)
Schmoeckel, E. et al. Comprehensive analysis of PD-L1 expression, HER2 amplification, ALK/EML4 fusion, and mismatch repair deficiency as putative predictive and prognostic factors in ovarian carcinoma. Virchows Arch. 474, 599–608 (2019). (PMID: 30734108)
Bonneville R., et al. Landscape of microsatellite instability across 39 cancer types. JCO Precision Oncol. 1–15 (2017).
Jensen, K. C. et al. Microsatellite instability and mismatch repair protein defects in ovarian epithelial neoplasms in patients 50 years of age and younger. Am. J. Surg. Pathol. 32, 1029–1037 (2008). (PMID: 18469706)
Kulangara, K. et al. Development of the combined positive score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J. Clin. Oncol. 35, e14589–e14589 (2017).
Kulangara, K. et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch. Path. Lab. Med. 143, 330–337 (2019). (PMID: 30028179)
Paxton A. Scoring gastric, GEJ cancers for PD-L1 expression. CAP Today (2018).
Mills, A. M. PD-L1 interpretation in cervical carcinomas: proceedings of the ISGyP companion society session at the 2020 USCAP annual meeting. Int. J. Gyn. Pathol. 40, 1–4 (2021).
Rimm, D. L. et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non–small cell lung cancer. JAMA Oncol. 3, 1051–1058 (2017). (PMID: 282783485650234)
Marchetti, A. et al. Multicenter comparison of 22C3 pharmDx (Agilent) and SP263 (Ventana) assays to test PD-L1 expression for NSCLC patients to be treated with immune checkpoint inhibitors. J. Thorac. Oncol.12, 1654–1663 (2017). (PMID: 28818609)
Fujimoto, D. et al. Comparison of PD-L1 assays in non-small cell lung cancer: 22C3 pharmdx and SP263. Anticancer Res. 38, 6891–6895 (2018). (PMID: 30504406)
Cheung, C. C. et al. Fit-for-purpose PD-L1 biomarker testing for patient selection in immuno-oncology: guidelines for clinical laboratories from the Canadian Association of Pathologists-Association Canadienne Des Pathologistes (CAP-ACP). Appl. Immunohistochem Mol. Morphol. 27, 699–714 (2019). (PMID: 315844516887625)
Fitzgibbons, P. L. et al. Principles of analytic validation of immunohistochemical assays: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch. Pathol. Lab. Med. 138, 1432–1443 (2014). (PMID: 24646069)
Huang, R. S. P. et al. A pan-cancer analysis of PD-L1 immunohistochemistry and gene amplification, tumor mutation burden and microsatellite instability in 48,782 cases. Mod. Pathol. 34, 252–263 (2021). (PMID: 32884129)
Shao, C. et al. Prevalence of high tumor mutational burden and association with survival in patients with less common solid tumors. JAMA Netw. Open 3, e2025109 (2020). (PMID: 331191107596577)
Zhu, Y. et al. Characterization of neoantigen load subgroups in gynecologic and breast cancers. Front. Bioeng Biotechnol. 8, 702 (2020). (PMID: 327545797370692)
Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016). (PMID: 268714704924663)
Kim, K. et al. Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat. Commun. 11, 951 (2020). (PMID: 320759647031381)
Talhouk, A. et al. A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer 113, 299–310 (2015). (PMID: 261720274506381)
AACR Project GENIE Consortium. AACR project GENIE: powering precision medicine through an international consortium. Cancer Disco 7, 818–831 (2017).
Goldberg, M. V. & Drake, C. G. LAG-3 in cancer immunotherapy. Curr. Top Microbiol. Immunol. 344, 269–278 (2011). (PMID: 210861084696019)
He, Y. et al. LAG-3 protein expression in non-small cell lung cancer and its relationship with PD-1/PD-L1 and tumor-infiltrating lymphocytes. J. Thorac. Oncol. 12, 814–823 (2017). (PMID: 28132868)
Whitehair, R., Peres, L. C. & Mills, A. M. Expression of the immune checkpoints LAG-3 and PD-L1 in high-grade serous ovarian carcinoma: relationship to tumor-associated lymphocytes and germline BRCA status. Int. J. Gyn. Pathol. 39, 558–566 (2020).
Curley, J. et al. Looking past PD-L1: expression of immune checkpoint TIM-3 and its ligand galectin-9 in cervical and vulvar squamous neoplasia. Mod. Pathol. 33, 1182–1192 (2020). (PMID: 32139873)
Du, W., et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int. J. Mol. Sci. 18, 645 (2017). (PMID: 5372657)
Guo, Z. et al. Combined TIM-3 blockade and CD137 activation affords the long-term protection in a murine model of ovarian cancer. J. Transl. Med. 11, 215 (2013). (PMID: 240448883853027)
Cao, Y. et al. Tim-3 expression in cervical cancer promotes tumor metastasis. PloS ONE 8, e53834 (2013). (PMID: 233359783545875)
Chen, F., Xu, Y., Chen, Y. & Shan, S. TIGIT enhances CD4+ regulatory T‐cell response and mediates immune suppression in a murine ovarian cancer model. Cancer Med. 9, 3584–3591 (2020). (PMID: 322123177221438)
Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26, 923–937 (2014). (PMID: 25465800)
Smazynski, J. et al. The immune suppressive factors CD155 and PD-L1 show contrasting expression patterns and immune correlates in ovarian and other cancers. Gynecol. Oncol. 158, 167–177 (2020). (PMID: 32446718)
Lines, J. L., Sempere, L. F., Broughton, T., Wang, L. & Noelle, R. VISTA Is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol. Res. 2, 510–517 (2014). (PMID: 248940884085258)
ElTanbouly, M. A., Croteau, W., Noelle, R. J., Lines, J. L. VISTA: a novel immunotherapy target for normalizing innate and adaptive immunity. Sem. Immunol. 42 (2019).
Abadier, M. LeyK. P-selectin glycoprotein ligand-1 in T cells. Curr. Opin. Hematol. 24, 265–273 (2017). (PMID: 28178038)
Buchan, S. L., Rogel, A. & Al-Shamkhani, A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood 131, 39–48 (2018). (PMID: 29118006)
Bulliard, Y. et al. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol. Cell Biol. 92, 475–480 (2014). (PMID: 24732076)
Scarlett, U. K. et al. In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res. 69, 7329–7337 (2009). (PMID: 197380572754806)
Yan, Y. et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J. Immunol. 185, 5953–5961 (2010). (PMID: 20944000)
Leung, B. S., Stout, L. E., Shaskan, E. G. & Thompson, R. M. Differential induction of indoleamine-2,3-dioxygenase (IDO) by interferon-gamma in human gynecologic cancer cells. Cancer Lett. 66, 77–81 (1992). (PMID: 1451099)
Fallarino, F. et al. IDO mediates TLR9-driven protection from experimental autoimmune diabetes. J. Immunol. 183, 6303–6312 (2009). (PMID: 19841163)
Iversen, T. Z., Andersen, M. H. & Svane, I. M. The targeting of indoleamine 2,3 dioxygenase -mediated immune escape in cancer. Basic Clin. Pharm. Toxicol. 116, 19–24 (2015).
Munn, D. H. & Mellor, A. L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34, 137–143 (2013). (PMID: 23103127)
Munn, D. H. & Mellor, A. L. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 37, 193–207 (2016). (PMID: 268392604916957)
Platten, M., von Knebel, Doeberitz, Oezen, I., Wick, W. & Ochs, K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front. Immunol. 5, 673 (2015). (PMID: 256286224290671)
Vacchelli, E. et al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 3, e957994 (2014). (PMID: 259415784292223)
Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998). (PMID: 9712583)
Suzuki, S., Toné, S., Takikawa, O., Kubo, I. & Minatogawa, Y. Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti. Biochem. J. 355, 425–429 (2001). (PMID: 112847301221754)
Szántó, S. et al. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice. Arthritis Res. Ther. 9, R50 (2007). (PMID: 175118582206348)
Mills, A. M. et al. Targetable immune regulatory molecule expression in high-grade serous ovarian carcinomas in African American women: a study of PD-L1 and IDO in 112 cases from the African American Cancer Epidemiology Study (AACES). Int. J. Gyn. Pathol. 38, 157–170 (2019).
Mills, A. M. et al. Indoleamine 2,3-dioxygenase in endometrial cancer: a targetable mechanism of immune resistance in mismatch repair-deficient and intact endometrial carcinomas. Mod. Pathol. 31, 1282-1290 (2018). (PMID: 29559741)
Inaba, T. et al. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol. Oncol. 115, 185–192 (2009). (PMID: 19665763)
Inaba, T. et al. Indoleamine 2,3-dioxygenase expression predicts impaired survival of invasive cervical cancer patients treated with radical hysterectomy. Gynecol. Oncol. 117, 423–428 (2010). (PMID: 20350764)
de Jong, R. A. et al. Prognostic role of indoleamine 2,3-dioxygenase in endometrial carcinoma. Gynecol. Oncol. 126, 474–480 (2012). (PMID: 22668882)
Mondanelli, G. et al. Current challenges for IDO2 as target in cancer immunotherapy. Front. Immunol. 12 (2021).
Metz, R. et al. IDO2 is critical for IDO1-mediated T-cell regulation and exerts a non-redundant function in inflammation. Int. Immunol. 26, 357–367 (2014). (PMID: 244023114432394)
Leone, R. D. & Emens, L. A. Targeting adenosine for cancer immunotherapy. J. Immunother. Cancer 6, 57 (2018). (PMID: 299145716006764)
Halpin-Veszeleiova, K. & Hatfield, S. M. Oxygenation and A2AR blockade to eliminate hypoxia/HIF-1α-adenosinergic immunosuppressive axis and improve cancer immunotherapy. Curr. Opin. Pharm. 53, 84–90 (2020).
Allard, D., Allard, B., Gaudreau, P.-O., Chrobak, P. & Stagg, J. CD73-adenosine: a next-generation target in immuno-oncology. Immunotherapy 8, 145–163 (2016). (PMID: 26808918)
Chen, S. et al. CD73 expression on effector T cells sustained by TGF-β facilitates tumor resistance to anti-4-1BB/CD137 therapy. Nat. Commun. 10, 150 (2019). (PMID: 306355786329764)
Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011). (PMID: 22076556)
Kloor, M. et al. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res. 65, 6418–6424 (2005). (PMID: 16024646)
Šmahel M. PD-1/PD-L1 blockade therapy for tumors with downregulated MHC class I expression. Intl. J. Mol. Sci. 18, 1331 (2017).
Ugurel, S. et al. MHC class-I downregulation in PD-1/PD-L1 inhibitor refractory Merkel cell carcinoma and its potential reversal by histone deacetylase inhibition: a case series. Cancer Immunol. Immunother. 68, 983–990 (2019). (PMID: 30993371)
Yoo, S. H. et al. Prognostic value of the association between MHC class I downregulation and PD-L1 upregulation in head and neck squamous cell carcinoma patients. Sci. Rep. 9, 7680 (2019). (PMID: 311184886531443)
Erdogdu, I. H. MHC class 1 and PDL-1 status of primary tumor and lymph node metastatic tumor tissue in gastric cancers. Gastroenterol. Res. Pract. (2019).
Bijen, C. B. M. et al. The prognostic role of classical and nonclassical MHC class I expression in endometrial cancer. Int. J. Cancer 126, 1417–1427 (2010). (PMID: 19728333)
Dibbern, M. E. et al. Loss of MHC class i expression in HPV-associated cervical and vulvar neoplasia: a potential mechanism of resistance to checkpoint inhibition. Am. J. Surg. Pathol. 44, 1184–1191 (2020). (PMID: 32496434)
Friedman L. A., Bullock T. N., Sloan E. A., Ring K. L., Mills A. M. MHC class I loss in endometrial carcinoma: a potential resistance mechanism to immune checkpoint inhibition. Mod. Pathol. 34, 627–636 (2021). (PMID: 33011747)
Abel, A. M., Yang, C., Thakar, M. S., Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9 (2018).
Hu, W., Wang, G., Huang, D., Sui, M., Xu, Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front. Immunol. 10 (2019).
Crowther, M. D. et al. Genome-wide CRISPR–Cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic MHC class I-related protein MR1. Nat Immunol 21, 178–185 (2020). (PMID: 319599826983325)
المشرفين على المادة: 0 (B7-H1 Antigen)
0 (Biomarkers, Tumor)
تواريخ الأحداث: Date Created: 20210908 Date Completed: 20220404 Latest Revision: 20230210
رمز التحديث: 20231215
DOI: 10.1038/s41379-021-00882-y
PMID: 34493822
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-0285
DOI:10.1038/s41379-021-00882-y