دورية أكاديمية

Large impact cratering during lunar magma ocean solidification.

التفاصيل البيبلوغرافية
العنوان: Large impact cratering during lunar magma ocean solidification.
المؤلفون: Miljković K; Curtin University, School of Earth and Planetary Science, Space Science and Technology Centre, Perth, WA, Australia. katarina.miljkovic@curtin.edu.au., Wieczorek MA; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France., Laneuville M; Earth-Life Science Institute, Tokyo, Japan., Nemchin A; Curtin University, School of Earth and Planetary Science, Space Science and Technology Centre, Perth, WA, Australia., Bland PA; Curtin University, School of Earth and Planetary Science, Space Science and Technology Centre, Perth, WA, Australia., Zuber MT; Massachusetts Institute of Technology, Cambridge, MA, USA.
المصدر: Nature communications [Nat Commun] 2021 Sep 14; Vol. 12 (1), pp. 5433. Date of Electronic Publication: 2021 Sep 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مستخلص: The lunar cratering record is used to constrain the bombardment history of both the Earth and the Moon. However, it is suggested from different perspectives, including impact crater dating, asteroid dynamics, lunar samples, impact basin-forming simulations, and lunar evolution modelling, that the Moon could be missing evidence of its earliest cratering record. Here we report that impact basins formed during the lunar magma ocean solidification should have produced different crater morphologies in comparison to later epochs. A low viscosity layer, mimicking a melt layer, between the crust and mantle could cause the entire impact basin size range to be susceptible to immediate and extreme crustal relaxation forming almost unidentifiable topographic and crustal thickness signatures. Lunar basins formed while the lunar magma ocean was still solidifying may escape detection, which is agreeing with studies that suggest a higher impact flux than previously thought in the earliest epoch of Earth-Moon evolution.
(© 2021. The Author(s).)
References: Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-lived magma ocean on a young Moon. Sci. Adv. 6, eaba8949 (2020).
Tian, Z. L., Wisdom, J. & Elkins-Tanton, L. Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-spinning Earth. Icarus 281, 90–102 (2017). (PMID: 10.1016/j.icarus.2016.08.030)
Ćuk, M. & Stewart, S. T. Making the moon from a fast-spinning earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2018).
Canup, R. M. Forming a moon with an Earth-like composition via a giant impact. Science. 338, 1052–1055 (2018).
Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999). (PMID: 10.1006/icar.1999.6204)
Tonks, W. B. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993). (PMID: 10.1029/92JE02726)
Canup, R. M. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004). (PMID: 10.1146/annurev.astro.41.082201.113457)
Solomon, S. C. & Longhi, J. Magma oceanography: 1. Thermal evolution. in Proc. Lunar Sci. Conf. 8th 583–599 (1877).
Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006). (PMID: 10.2138/rmg.2006.60.4)
Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012). (PMID: 10.1146/annurev-earth-042711-105503)
Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosci. 2, 133–136 (2009). (PMID: 10.1038/ngeo417)
Kamata, S. et al. The relative timing of lunar magma ocean solidification and the late heavy bombardment inferred from highly degraded impact basin structures. Icarus 250, 492–503 (2015). (PMID: 10.1016/j.icarus.2014.12.025)
Wieczorek, M. A. & Phillips, R. A. The ‘Procellarum KREEP Terrane’: implications for mare volcanism and lunar evolution. J. Geophys. Res. 195, 20,417–20,430 (2000). (PMID: 10.1029/1999JE001092)
Laneuville, M., Taylor, J. & Wieczorek, M. A. Distribution of radioactive heat sources and thermal history of the moon. J. Geophys. Res. Planets 123, 3144–3166 (2018). (PMID: 10.1029/2018JE005742)
Borg, L. E., Shearer, C. K., Asmerom, Y. & Papike, J. J. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature 432, 209–211 (2004). (PMID: 1553836610.1038/nature03070)
Crow, C. A., Moser, D. E. & McKeegan, K. D. Shock metamorphic history of >4 Ga Apollo 14 and 15 zircons. Meteorit. Planet. Sci. 54, 181–201 (2019). (PMID: 10.1111/maps.13184)
Fassett, C. I. & Minton, D. A. Impact bombardment of the terrestrial planets and the early history of the Solar System. Nat. Geosci. 6, 520–524 (2013). (PMID: 10.1038/ngeo1841)
Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018). (PMID: 10.1016/j.icarus.2017.12.046)
Zhu, M. H. et al. Reconstructing the late-accretion history of the Moon. Nature 571, 226–229 (2019). (PMID: 3129255610.1038/s41586-019-1359-0)
Richardson, J. E. Cratering saturation and equilibrium: a new model looks at an old problem. Icarus 204, 697–715 (2009). (PMID: 10.1016/j.icarus.2009.07.029)
Richardson, J. E. & Abramov, O. Modeling the formation of the lunar upper megaregolith layer. Planet. Sci. J. 1, 2 (2020). (PMID: 10.3847/PSJ/ab7235)
Zuber, M. T. et al. Gravity field of the moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Sci. (80-.) 339, 668–671 (2013). (PMID: 10.1126/science.1231507)
Wieczorek, M. A. et al. The crust of the moon as seen by GRAIL. Science 339, 671–675 (2013). (PMID: 2322339410.1126/science.1231530)
Neumann, G. A. et al. Planetary science: lunar impact basins revealed by gravity recovery and interior laboratory measurements. Sci. Adv. 1, e1500852 (2015).
Wilhelms, D. E. The Geologic History of the Moon, https://doi.org/10.3133/pp1348 (1987).
Mohit, P. S. & Phillips, R. J. Viscoelastic evolution of lunar multiring basins. J. Geophys. Res. E Planets 111, 1–17 (2006). (PMID: 10.1029/2005JE002654)
Miljković, K. et al. Subsurface morphology and scaling of lunar impact basins. J. Geophys. Res. Planets 121, 1695–1712 (2016). (PMID: 10.1002/2016JE005038)
Potter, R. W. K., Kring, D. A., Collins, G. S., Kiefer, W. S. & McGovern, P. J. Estimating transient crater size using the crustal annular bulge: Insights from numerical modeling of lunar basin-scale impacts. Geophys. Res. Lett. 39, 1–5 (2012). (PMID: 10.1029/2012GL052981)
Conrad, J. W., Nimmo, F., Fassett, C. I. & Kamata, S. Lunar impact history constrained by GRAIL-derived basin relaxation measurements. Icarus 314, 50–63 (2018). (PMID: 10.1016/j.icarus.2018.05.029)
Solomon, S. C., Comer, R. P. & Head, J. W. The evolution of impact basins: viscous relaxation of topographic relief (Orientale Basin, Moon). J. Geophys. Res. 87, 3975–3992 (1982). (PMID: 10.1029/JB087iB05p03975)
Kamata, S. et al. Viscoelastic deformation of lunar impact basins: Implications for heterogeneity in the deep crustal paleo-thermal state and radioactive element concentration. J. Geophys. Res. E Planets 118, 398–415 (2013). (PMID: 10.1002/jgre.20056)
Melosh, H. J. & Ivanov, B. A. Impact Crater Collapse. Annu. Rev. Earth Planet. Sci. 27, 385–415 (1999). (PMID: 10.1146/annurev.earth.27.1.385)
Johnson, B. C. et al. Formation of the Orientale lunar multiring basin. Science 354, 441–444 (2016).
Melosh, H. J. & Mckinnon, W. B. The mechanics of ringed basin formation. Geophys. Res. Lett. 5, 8–11 (1978). (PMID: 10.1029/GL005i011p00985)
McKinnon, W. B. Multi-ring basins: formation and evolution. Proc. Lunar Sci. Conf. 12A, 259–273 (1981).
Johnson, B. C. et al. Controls on the formation of lunar multiring basins. J. Geophys. Res. Planets 123, 3035–3050 (2018). (PMID: 10.1029/2018JE005765)
Mc Kinnon, W. B. & Melosh, H. J. Evolution of planetary lithospheres: evidence from multiringed structures on ganymede and callisto. Icarus 44, 454–471 (1980).
Miljković, K. et al. Excavation of the lunar mantle by basin-forming events on the Moon. Earth Planet. Sci. Lett. 409, 243–251 (2015). (PMID: 10.1016/j.epsl.2014.10.041)
Trowbridge, A. J., Johnson, B. C., Freed, A. M. & Melosh, H. J. Why the lunar South Pole-Aitken Basin is not a mascon. Icarus https://doi.org/10.1016/j.icarus.2020.113995 (2020).
Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004). (PMID: 10.1111/j.1945-5100.2004.tb00337.x)
Ivanov, B. A., Deniem, D. & Neukum, G. Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric breakup and impact cratering. Int. J. Impact Eng. 20, 411–430 (1997). (PMID: 10.1016/S0734-743X(97)87511-2)
Wünnemann, K., Collins, G. S. & Melosh, H. J. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180, 514–527 (2006). (PMID: 10.1016/j.icarus.2005.10.013)
Pierazzo, E. et al. Validation of numerical codes for impact and explosion cratering: impacts on strengthless and metal targets. Meteorit. Planet. Sci. 43, 1917–1938 (2008). (PMID: 10.1111/j.1945-5100.2008.tb00653.x)
Pierazzo, E., Vickery, A. M. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997). (PMID: 10.1006/icar.1997.5713)
Ivanov, B. A., Melosh, H. J. & Pierazzo, E. Basin-forming impacts: reconnaissance modeling. Spec. Pap. Geol. Soc. Am. 465, 29–49 (2010).
Zhang, N., Dygert, N., Liang, Y. & Parmentier, E. M. The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophys. Res. Lett. 44, 6543–6552 (2017). (PMID: 10.1002/2017GL073702)
Reese, C. C. & Solomatov, V. S. Fluid dynamics of local martian magma oceans. Icarus 184, 102–120 (2006). (PMID: 10.1016/j.icarus.2006.04.008)
Solomatov, V. S. in Treatise on Geophysics (ed. Schubert, G.) 91–120 (Elsevier, 2007).
Laneuville, M., Wieczorek, M. A., Breuer, D. & Tosi, N. Asymmetric thermal evolution of the Moon. J. Geophys. Res. E Planets 118, 1435–1452 (2013). (PMID: 10.1002/jgre.20103)
Miljković, K. et al. Asymmetric distribution of lunar impact basins caused by variations in target properties. Science 342, 724–726 (2013).
Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole-Aitken basin impact. Icarus 220, 730–743 (2012). (PMID: 10.1016/j.icarus.2012.05.032)
Potter, R. W. K., Kring, D. A. & Collins, G. S. Large Meteorite Impacts and Planetary Evolution V GSA Special Papers. Scaling of basin-sized impacts and the influence of target temperature. 2518, 99–113 (2015).
Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011). (PMID: 10.1016/j.icarus.2011.03.010)
Marchi, S., Mottola, S., Cremonese, G., Massironi, M. & Martellato, E. A new chronology for the Moon and Mercury. Astron. J. 137, 4936–4948 (2009). (PMID: 10.1088/0004-6256/137/6/4936)
Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012). (PMID: 2253524510.1038/nature10967)
Pierazzo, E. & Melosh, H. J. Hydrocode modeling of oblique impacts: the fate of the projectile. Meteorit. Planet. Sci. 35, 117–130 (2000). (PMID: 10.1111/j.1945-5100.2000.tb01979.x)
Elbeshausen, D., Wünnemann, K. & Collins, G. S. Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms. Icarus 204, 716–731 (2009). (PMID: 10.1016/j.icarus.2009.07.018)
Collins, G. S. et al. A steeply-inclined trajectory for the chicxulub impact. Nat. Commun. 11, 1480 (2020). (PMID: 32457325725112110.1038/s41467-020-15269-x)
تواريخ الأحداث: Date Created: 20210915 Latest Revision: 20230206
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC8440705
DOI: 10.1038/s41467-021-25818-7
PMID: 34521860
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-021-25818-7