دورية أكاديمية

Effects of Controlled Generator Fume Emissions on the Levels of Troponin I, C-Reactive Protein and Oxidative Stress Markers in Dogs: Exploring Air Pollution-Induced Cardiovascular Disease in a Low-Resource Country.

التفاصيل البيبلوغرافية
العنوان: Effects of Controlled Generator Fume Emissions on the Levels of Troponin I, C-Reactive Protein and Oxidative Stress Markers in Dogs: Exploring Air Pollution-Induced Cardiovascular Disease in a Low-Resource Country.
المؤلفون: Eze UU; Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria., Eke IG; Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria., Anakwue RC; Departments of Medicine, Pharmacology/Therapeutics, Faculty of Medical Sciences, University of Nigeria, Enugu Campus, Enugu, Nigeria. raphael.anakwue@unn.edu.ng.; Environment and Health Research Group, University of Nigeria, Nsukka, Enugu, Nigeria. raphael.anakwue@unn.edu.ng., Oguejiofor CF; Department of Veterinary Obstetrics and Reproductive Diseases, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria., Onyejekwe OB; Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria., Udeani IJ; Veterinary Teaching Hospital, University of Nigeria, Nsukka, Enugu, Nigeria., Onunze CJ; Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria., Obed UJ; Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria., Eze AA; Department of Veterinary Obstetrics and Reproductive Diseases, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria., Anaga AO; Department of Veterinary Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria., Anene BM; Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu, Nigeria.
المصدر: Cardiovascular toxicology [Cardiovasc Toxicol] 2021 Dec; Vol. 21 (12), pp. 1019-1032. Date of Electronic Publication: 2021 Sep 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 101135818 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0259 (Electronic) Linking ISSN: 15307905 NLM ISO Abbreviation: Cardiovasc Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Totowa, NJ : Humana Press, c2001-
مواضيع طبية MeSH: Developing Countries*, Air Pollutants/*toxicity , C-Reactive Protein/*metabolism , Cardiovascular Diseases/*chemically induced , Electric Power Supplies/*adverse effects , Gasoline/*toxicity , Oxidative Stress/*drug effects , Troponin I/*blood, Animals ; Biomarkers/blood ; Cardiovascular Diseases/blood ; Cardiovascular Diseases/physiopathology ; Dogs ; Heart Rate/drug effects ; Inhalation Exposure ; Male ; Nigeria ; Respiratory Rate/drug effects ; Risk Assessment ; Time Factors
مستخلص: Exhaust fumes from petrol/diesel-powered electric generators contribute significantly to air pollution in many developing countries, constituting health hazards to both humans and animals. This study evaluated the serum concentrations of Troponin I (TnI), C-reactive protein (CRP) and serum levels/activities of oxidative stress markers: catalase (CAT), reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) in dogs experimentally exposed to graded levels of petrol generator exhaust fume (PGEF). Sixteen (16) healthy and adult male Basenji dogs were randomly assigned into four groups (A-D). Group A was the unexposed control while groups B, C and D were exposed to PGEF for 1, 2 and 3 h per day, respectively, for 90 days. Repeated analysis were performed at the baseline, and every thirty days, for a total of 90 days. There was a significant interaction (p < 0.05) between the effects of PGEF exposure level (in h/day) and duration of exposure (in months) on all the tested serum parameters. There was a significant main effect (p < 0.05) for PGEF exposure level on the serum parameters. As the level of PGEF exposure was increased, the serum concentrations of TnI, CRP, CAT, MDA and NO increased, GSH decreased, whereas SOD activity increased by day 30 but declined at the end. Moreover, there was a significant simple main effect (p < 0.05) for duration of PGEF exposure. All the parameters increased as the duration of PGEF exposure was increased to 90 days except GSH concentration which decreased, whereas SOD activity increased initially but declined at the end of the study. Thus, there was increased serum concentrations of TnI, CRP and increased oxidative stress in the PGEF-exposed dogs. These findings are instructive and could be grounds for further studies on air pollutants-induced cardiovascular disease given the widespread use of electricity generators in many low-resource countries.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Dotson, M. J., & Hyatt, E. V. (2008). Understanding dog–human companionship. Journal of Business Research., 61(5), 457–466. https://doi.org/10.1016/j.jbusres.2007.07.019. (PMID: 10.1016/j.jbusres.2007.07.019)
World Health Organization. (WHO). (2014). 7 million deaths annually linked to air pollution. Central European Journal of Public Health, 22, 53–59.
Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 21, 65. https://doi.org/10.4103/1735-1995.189646. (PMID: 10.4103/1735-1995.189646)
Han, L., Zhou, W., & Li, W. (2016). Fine particulate (PM 2.5 ) dynamics during rapid urbanization in Beijing, 1973–2013. Scientific Reports, 6, 23604. https://doi.org/10.1038/srep23604. (PMID: 10.1038/srep23604270315984815558)
Lai, T. C., Chiang, C. Y., Wu, C. F., Yang, S. L., Liu, D. P., Chan, C. C., & Lin, H. H. (2016). Ambient air pollution and risk of tuberculosis: A cohort study. Occupational and Environmental Medicine, 73(1), 56–61. https://doi.org/10.1136/oemed-2015-102995. (PMID: 10.1136/oemed-2015-10299526514394)
Lee, K. K., Miller, M. R., & Shah, A. S. V. (2018). Air pollution and stroke. Journal of Stroke, 20(1), 2–11. https://doi.org/10.5853/jos.2017.02894. (PMID: 10.5853/jos.2017.02894294020725836577)
World Health Organization (WHO). (2019). Air Pollution. Retrieved October 5, 2020 from http://www.who.int/airpollution/en/.
Organisation for Economic Co-operation and Development (OECD). (2016). The economic consequences of outdoor air pollution. Organisation for Economic Co-operation and Development Publishing.
Ifegwu, C., Igwo-Ezikpe, M. N., Anyakora, C., Osuntoki, A., Oseni, K. A., & Alao, E. O. (2013). 1-hydroxypyrene levels in blood samples of rats after exposure to generator fumes. Biomarkers in cancer, 5, 1–6. https://doi.org/10.4137/BIC.S10759. (PMID: 10.4137/BIC.S10759241793933791950)
Majewski, W. A., & Khair, M. K. (2006). Diesel emissions and their control. SAE International.
Leni, Z., Kunzi, L., & Geiser, M. (2020). Air pollution causing oxidative stress. Current Opinion in Toxicology, 20, 1–8. https://doi.org/10.1016/j.cotox.2020.02.006. (PMID: 10.1016/j.cotox.2020.02.006)
Wilson, D. W., Aung, H. H., Lame, M. W., Plummer, L., Pinkerton, K. E., Ham, W., Kleeman, M., Norris, J. W., & Tablin, F. (2010). Exposure of mice to concentrated ambient particulate matter results in platelet and systemic cytokine activation. Inhalation Toxicology, 22, 267–276. https://doi.org/10.3109/08958370903278069. (PMID: 10.3109/0895837090327806920064101)
Xu, X., Jiang, S. Y., Wang, T. Y., Bai, Y., Zhong, M., Wang, A., Lippmann, M., Chen, L. C., Rajagopalan, S., & Sun, Q. (2013). Inflammatory response to fine particulate air pollution exposure: neutrophil versus monocyte. PLoS ONE, 8, e71414. https://doi.org/10.1371/journal.pone.0071414. (PMID: 10.1371/journal.pone.0071414239511563738512)
Sun, L., Liu, C., Xu, X., Ying, Z., Maiseyeu, A., Wang, A., Allen, K., Lewandowski, R. P., Bramble, L. A., Morishita, M., Wagner, J. G., Dvonch, J., Sun, Z., Yan, X., Brook, R. D., Rajagopalan, S., Harkema, J. R., Sun, Q., & Fan, Z. (2013). Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Particle and Fibre Toxicology, 22(10), 43. https://doi.org/10.1186/1743-8977-10-43. (PMID: 10.1186/1743-8977-10-43)
Li, W., Wilker, E. H., Dorans, K. S., Rice, M. B., Schwartz, J., Coull, B. A., Koutrakis, P., Gold, D. R., Keaney, J. F., Lin, H., Vasan, R. S., Benjamin, E. J., & Mittleman, M. A. (2016). Short-term exposure to air pollution and biomarkers of oxidative stress: The Framingham Heart Study. Journal of the American Heart Association, 5, e002742. https://doi.org/10.1161/JAHA.115.002742. (PMID: 10.1161/JAHA.115.002742271264784889166)
Peters, A., Fröhlich, M., Döring, A., Immervoll, T., Wichmann, H. E., Hutchinson, W. L., Pepys, M. B., & Koenig, W. (2001). Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. European Heart Journal, 22(14), 1198–1204. https://doi.org/10.1053/euhj.2000.2483. (PMID: 10.1053/euhj.2000.248311440492)
Tracy, R. P. (1999). Epidemiological evidence of inflammation in cardiovascular disease. Thrombosis and Haemostasis, 82, 826–831. (PMID: 10.1055/s-0037-1615918)
Cummins, B., Auckland, M. L., & Cummins, P. (1987). Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. American Heart Journal, 113, 1333–1344. https://doi.org/10.1016/0002-8703(87)90645-4. (PMID: 10.1016/0002-8703(87)90645-43591601)
Katus, H. A., Looser, S., Hallermayer, K., Remppis, A., Scheffold, T., Borgya, A., Essig, U., & Geuss, U. (1992). Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clinical Chemistry, 38, 386–393. https://doi.org/10.1093/clinchem/38.3.386. (PMID: 10.1093/clinchem/38.3.3861547556)
Morrow, D. A., Cannon, C. P., Rifai, N., Frey, M. J., Vicari, R., Lakkis, N., Robertson, D. H., Hille, D. A., DeLucca, P. T., DiBattiste, P. M., Demopoulos, L. A., Weintraub, W. S., Braunwald, E., & TACTICS-TIMI 18 Investigators. (2001). Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: results from a randomized trial. JAMA, 286(19), 405–412. https://doi.org/10.1001/jama.286.19.2405. (PMID: 10.1001/jama.286.19.2405)
Pepys, M. B. (1995). The acute phase response and C-reactive protein. In D. J. Weatherall, J. G. G. Ledingham, & D. A. Warell (Eds.), Oxford textbook of medicine (pp. 1527–1533). Oxford University Press.
Hof, D., Klingenberg, R., & von Eckardstein, A. (2013). Sensible use of high-sensitivity troponin assays. Methods in Molecular Biology, 963, 385–406. https://doi.org/10.1007/978-1-62703-230-8&#95;24. (PMID: 10.1007/978-1-62703-230-8_2423296624)
Wallis, L. J., Szabó, D., Erdélyi-Belle, B., & Kubinyi, E. (2018). Demographic change across the lifespan of pet dogs and their impact on health status. Frontiers in Veterinary Science, 5(200), 00200. https://doi.org/10.3389/fvets.2018.00200. (PMID: 10.3389/fvets.2018.00200)
National Research Council: Institute for Laboratory Animal Research. (2011). The guide for the care and use of laboratory animals (8th ed.). The National Academies Press.
Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196, 143–152. (PMID: 10.1016/0009-8981(91)90067-M)
Moron, M. A., Dipierrre, J. W., & Mannervick, B. (1979). Levels of glutathione, glutathione reductase and glutathione Stransferase activity in rat lung and liver. Biochimica et Biophysica Acta, 582, 67–78. (PMID: 10.1016/0304-4165(79)90289-7)
Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175. (PMID: 10.1016/S0021-9258(19)45228-9)
Sun, J., Zhang, X. J., Broderick, M., & Fein, H. (2003). Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors, 3, 276–284. (PMID: 10.3390/s30800276)
Peters, A., Perz, S., Dfiring, A., Stieber, J., Koenig, W., & Wichmann, S. H. (1999). Increases in heart rate during an air pollution episode. American Journal of Epidemiology, 150, 1094–1098. (PMID: 10.1093/oxfordjournals.aje.a009934)
Bootsma, M., Swenne, C. A., van Bolhuis, H. H., Chang, P. C., Cats, V. M., & Bruschke, A. V. (1994). Heart rate and heart rate variability as indexes of sympathovagal balance. American Journal of Physiology, 266, H1565–H1571. https://doi.org/10.1152/ajpheart.1994.266.4.H1565. (PMID: 10.1152/ajpheart.1994.266.4.H1565)
Shaper, A. G., Wannamethee, G., Macfarlane, P., & Walker, M. (1993). Heart rate, ischemic heart disease, and sudden cardiac death in middle aged British men. British Heart Journal, 70(1), 49–55. https://doi.org/10.1136/hrt.70.1.49. (PMID: 10.1136/hrt.70.1.4980379981025228)
Wannamethee, G., Shaper, A. G., Macfarlane, P. W., & Walker, M. (1995). Risk factors for sudden cardiac death in middle-aged British men. Circulation, 91(6), 1749–1756. https://doi.org/10.1161/01.cir.91.6.1749. (PMID: 10.1161/01.cir.91.6.17497882483)
Ni, L., Chuang, C., & Zuo, Li. (2015). Fine particulate matter in acute exacerbation of COPD. Frontiers in Physiology, 6, 294. https://doi.org/10.3389/fphys.2015.00294. (PMID: 10.3389/fphys.2015.00294265570954617054)
Dominici, F., McDermott, A., Zeger, S. L., & Samet, J. M. (2003). National maps of the effects of particulate matter on mortality: Exploring geographical variation. Environmental Health Perspectives, 111, 39–43. https://doi.org/10.1289/ehp.5181. (PMID: 10.1289/ehp.5181125156771241304)
Laden, F., Schwartz, J., Speizer, F. E., & Dockery, D. W. (2006). Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard six cities study. American Journal of Respiratory and Critical Care Medicine, 173, 667–672. https://doi.org/10.1164/rccm.200503-443OC. (PMID: 10.1164/rccm.200503-443OC164244472662950)
Li, M. H., Fan, L. C., Mao, B., Yang, J. W., Choi, A. M., Cao, W. J., & Xu, J. F. (2015). Short term exposure to ambient fine particulate matter (PM2.5) increases hospitalizations and mortality of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Chest, 149(2), 447–458. https://doi.org/10.1378/chest.15-0513. (PMID: 10.1378/chest.15-0513)
Sleeper, M. M., Clifford, C. A., & Laster, L. (2001). Cardiac troponin I in the normal dog and cat. Journal of Veterinary Internal Medicine, 15(5), 501–503. https://doi.org/10.1111/j.1939-1676.2001.tb01582.x. (PMID: 10.1111/j.1939-1676.2001.tb01582.x11596740)
Langhorn, R., & Willesen, J. L. (2016). Cardiac troponins in dogs and cats. Journal of Veterinary Internal Medicine, 30(1), 36–50. https://doi.org/10.1111/jvim.13801. (PMID: 10.1111/jvim.1380126681537)
Sleeper, M. M., Clifford, C. A., & Laster, L. L. (2008). Cardiac troponin I in the normal dog and cat. Journal of Veterinary Internal Medicine, 15(5), 501–503. https://doi.org/10.1111/j.1939-1676.2001.tb01582.x. (PMID: 10.1111/j.1939-1676.2001.tb01582.x)
Tarducci, A., Abate, O., Borgarelli, M., Borrelli, A., Zanatta, R., & Casnasso, A. (2004). Serum values of cardiac troponin-T in normal and cardiomyopathic dogs. Veterinary Research Communications, 28, 385–388. https://doi.org/10.1023/B:VERC.0000045451.89851.9d. (PMID: 10.1023/B:VERC.0000045451.89851.9d15373003)
Kidd, L., Stepien, R. L., & Amrheiw, D. P. (2000). Clinical findings and coronary artery disease in dogs and cats with acute and subacute myocardial necrosis: 28 cases. Journal of the American Animal Hospital Association, 36, 199–208. (PMID: 10.5326/15473317-36-3-199)
Verdouw, P. D., van den Doel, M. A., de Zeeuw, S., & Duncker, D. J. (1998). Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovascular Research, 39, 121–135. (PMID: 10.1016/S0008-6363(98)00069-8)
Driehuys, S., Van Winkle, T. J., Sammarco, C. D., & Drobatz, K. J. (1998). Myocardial infarction in dogs and cats: 37 cases (1985–1994). Journal of the American Veterinary Medical Association, 213, 1444–1448. (PMID: 9828941)
Brook, R. D., Brook, J. R., Urch, B., Vincent, R., Rajagoplan, S., & Silverman, F. (2002). Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation, 105, 1534–1536. https://doi.org/10.1161/01.CIR.0000013838.94747.64. (PMID: 10.1161/01.CIR.0000013838.94747.6411927516)
Urch, B., Silverman, F., Corey, P., Brook, J. R., Lukic, K. Z., Rajagopalan, S., & Brook, R. D. (2005). Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environmental Health Perspectives, 113(8), 1052–1055. https://doi.org/10.1289/ehp.7785. (PMID: 10.1289/ehp.7785160790781280348)
Li, W., Dorans, K. S., Wilker, E. H., Rice, M. B., Ljungman, P. L., Schwartz, J. D., Coull, B. A., Koutrakis, P., Gold, D. R., Keaney, J. F., Jr., Vasan, R. S., Benjamin, E. J., & Mittleman, M. A. (2017). Short-term exposure to ambient air pollution and biomarkers of systemic inflammation. The Framingham Heart Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 7, 1793–1800. https://doi.org/10.1161/ATVBAHA.117.309799. (PMID: 10.1161/ATVBAHA.117.309799)
Brook, R. D., Brook, J. R., & Rajagopalan, S. (2003). Air pollution: The “Heart” of the problem. Current Hypertension Reports, 5, 32–39. (PMID: 10.1007/s11906-003-0008-y)
Pope, C. A., 3rd., Hansen, M. L., Long, R. W., Nielsen, K. R., Eatough, N. L., Wilson, W. E., & Eatough, D. J. (2004). Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environmental Health Perspectives, 112(3), 339–345. https://doi.org/10.1289/ehp.6588. (PMID: 10.1289/ehp.6588149987501241864)
Zeka, A., Sullivan, J. R., Vokonas, P. S., Sparrow, D., & Schwartz, J. (2006). Inflammatory markers and particulate air pollution: Characterizing the pathway to disease. International Journal of Epidemiology, 35(5), 1347–1354. https://doi.org/10.1093/ije/dyl132. (PMID: 10.1093/ije/dyl13216844771)
Li, Y., Rittenhouse-Olson, K., Scheider, W. L., & Mu, L. (2012). Effect of particulate matter air pollution on C-reactive protein: A review of epidemiologic studies. Reviews on Environmental Health, 27(2–3), 133–149. https://doi.org/10.1515/reveh-2012-0012. (PMID: 10.1515/reveh-2012-0012230239223559179)
Mates, J. M. (1999). Antioxidant enzymes and human disease. Clinical Biochemistry, 32, 593–603. (PMID: 10.1016/S0009-9120(99)00075-2)
Todorova, I., Simeonova, G., Kyuchukova, D., Dinev, D., & Gadjeva, V. (2005). Reference values of oxidative stress parameters (MDA, SOD, CAT) in dogs and cats. Comparative Clinical Pathology, 13, 190–194. https://doi.org/10.1007/s00580-005-0547-5. (PMID: 10.1007/s00580-005-0547-5)
Miller, M. R., Shaw, C. A., & Langrish, J. P. (2012). Oxidative stress and the cardiovascular effects of air pollution. Future Cardiology, 8(4), 577–602. (PMID: 10.2217/fca.12.43)
Gangwar, R. S., Bevan, G. H., Palanivel, R., Das, L., & Rajagopalan, S. (2020). Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biology, 34, 101545. (PMID: 10.1016/j.redox.2020.101545)
Tatsch, E., Bochi, G. V., Pereira, R. S., Kober, H., Oliveira, J. R., & Moresco, R. N. (2011). A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clinical Biochemistry, 44(4), 348–350. (PMID: 10.1016/j.clinbiochem.2010.12.011)
Baldissera, M. D., de Sousa, K. C. M., André, M. R., Guarda, N. S., Moresco, R. N., Herrera, H. M., Machado, R. Z., Santos Jaques, J. A. S., Tinucci-Costa, M., & Da Silva, A. S. (2015). Nitric oxide, protein oxidation and total antioxidant levels in serum of dogs naturally infected by Ehrlichia canis, Leishmania infantum and Babesia vogeli. Acta Scientiae Veterinariae, 43, 1320.
Flora Filho, R., & Zilberstein, B. (2000). Óxido nítrico: o simples mensageiro percorrendo a complexidade. Metabolismo, síntese e funções. Revista da Associação Médica Brasileira, 46(3), 265–271. (PMID: 10.1590/S0104-42302000000300012)
Da Silva, A. S., Paim, F. C., Santos, R. C. V., Sangoi, M. B., Moresco, R. N., Lopes, S. T., Jaques, J. A., Baldissarelli, J., Morsch, V. M., & Monteiro, S. G. (2012). Nitric oxide level, protein oxidation and antioxidante enzymes in rats infected by Trypanosoma evansi. Experimental Parasitology, 132(2), 166–170. (PMID: 10.1016/j.exppara.2012.06.010)
Ibitoye, F. I., & Adenikinju, A. (2007). Future demand for electricity in Nigeria. Applied Energy, 84(492–504), 5.
Shell Nigeria. 90 million Nigerians have smoke-related health problems. Retrieved April 5, 2020 from http://leadership.ng/nga/articles/39025/2012/11/02/90millionnigerianshavesmokerelated&#95;health&#95;problems&#95;shell.html.
Oguntoke, O., & Adeyemi, A. (2016). Degradation of urban environment and human health by emissions from fossil-fuel combusting electricity generators in Abeokuta metropolis, Nigeria. Indoor and Built Environment. https://doi.org/10.1177/1420326X16629818.ibe.sagepub.com. (PMID: 10.1177/1420326X16629818.ibe.sagepub.com)
World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide Global update 2005 Summary of risk assessment. WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland.
Anakwue, R. C., & Anakwue, A. C. (2014). Cardiovascular disease risk profiling in Africa: Environmental pollutants are not on the Agenda. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-013-9242-y. (PMID: 10.1007/s12012-013-9242-y24399073)
فهرسة مساهمة: Keywords: Air pollution; Cardiovascular disease; Dogs; Generator exhaust fume; Low-resource countries; Toxicity
المشرفين على المادة: 0 (Air Pollutants)
0 (Biomarkers)
0 (Gasoline)
0 (Troponin I)
9007-41-4 (C-Reactive Protein)
تواريخ الأحداث: Date Created: 20210917 Date Completed: 20220224 Latest Revision: 20220224
رمز التحديث: 20231215
DOI: 10.1007/s12012-021-09693-8
PMID: 34533688
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0259
DOI:10.1007/s12012-021-09693-8