دورية أكاديمية

Associations between DNA methylation and telomere length during early life: Insight from wild zebra finches (Taeniopygia guttata).

التفاصيل البيبلوغرافية
العنوان: Associations between DNA methylation and telomere length during early life: Insight from wild zebra finches (Taeniopygia guttata).
المؤلفون: Sheldon EL; Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia., Ton R; Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia., Boner W; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK., Monaghan P; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK., Raveh S; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK., Schrey AW; Department of Biology, Georgia Southern University, Armstrong Campus, Savannah, Georgia, USA., Griffith SC; Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
المصدر: Molecular ecology [Mol Ecol] 2022 Dec; Vol. 31 (23), pp. 6261-6272. Date of Electronic Publication: 2021 Oct 05.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Finches*/genetics, Animals ; DNA Methylation/genetics ; Australia ; Aging/genetics ; Telomere/genetics
مستخلص: Telomere length and DNA methylation (DNAm) are two promising biomarkers of biological age. Environmental factors and life history traits are known to affect variation in both these biomarkers, especially during early life, yet surprisingly little is known about their reciprocal association, especially in natural populations. Here, we explore how variation in DNAm, growth rate, and early-life conditions are associated with telomere length changes during development. We tested these associations by collecting data from wild, nestling zebra finches in the Australian desert. We found that increases in the level of DNAm were negatively correlated with telomere length changes across early life. We also confirm previously documented effects of post hatch growth rate and clutch size on telomere length in a natural ecological context for a species that has been extensively studied in the laboratory. However, we did not detect any effect of ambient temperature during developmental on telomere length dynamics. We also found that the absolute telomere length of wild zebra finches, measured using the in-gel TRF method, was similar to that of captive birds. Our findings highlight exciting new opportunities to link and disentangle potential relationships between DNA based biomarkers of ageing, and of physiological reactions to environmental change.
(© 2021 John Wiley & Sons Ltd.)
References: Ahmed, S., Passos, J. F., Birket, M. J., Beckmann, T., Brings, S., Peters, H., Birch-Machin, M. A., von Zglinicki, T., & Saretzki, G. (2008). Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. Journal of Cell Science, 121, 1046-1053. https://doi.org/10.1242/jcs.019372.
Angers, B., Castonguay, E., & Massicotte, R. (2010). Environmentally induced phenotypes and DNA methylation: How to deal with unpredictable conditions until the next generation and after. Molecular Ecology, 19, 1283-1295. https://doi.org/10.1111/j.1365-294X.2010.04580.x.
Arrigo, N., Holderegger, R., & Alvarez, N. (2012). Automated scoring of AFLPs using RawGeno v 2.0, a free R CRAN library. Methods in Molecular Biology, 888, 155-75. https://10.1007/978-1-61779-870-2_10.
Aviv, A., Chen, W., Gardner, J. P., Kimura, M., Brimacombe, M., Cao, X., & Berenson, G. S. (2009). Leukocyte telomere dynamics: Longitudinal findings among young adults in the Bogalusa Heart Study. American Journal of Epidemiology, 169, 323-329.
Banszerus, V. L., Vetter, V. M., Salewsky, B., König, M., & Demuth, I. (2019). Exploring the relationship of relative telomere length and the epigenetic clock in the LipidCardio cohort. International Journal of Molecular Sciences, 20(12), 3032. https://doi.org/10.3390/ijms20123032.
Barrett, E. L., Burke, T. A., Hammers, M., Komdeur, J., & Richardson, D. S. (2013). Telomere length and dynamics predict mortality in a wild longitudinal study. Molecular Ecology, 22, 249-259. https://doi.org/10.1111/mec.12110.
Bates, D., Machler, M., Bolker, M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48.
Bichet, C., Bouwhuis, S., Bauch, C., Verhulst, S., Becker, P. H., & Vedder, O. (2020). Telomere length is repeatable, shortens with age and reproductive success, and predicts remaining lifespan in a long-lived seabird. Molecular Ecology, 29, 429-441. https://doi.org/10.1111/mec.15331.
Blackburn, E. H. (1991). Structure and function of telomeres. Nature, 350, 569-573. https://doi.org/10.1038/350569a0.
Blackburn, E. H., & Epel, E. S. (2012). Telomeres and adversity: Too toxic to ignore. Nature, 490, 169-171. https://doi.org/10.1038/490169a.
Blasco, M. A. (2007). The epigenetic regulation of mammalian telomeres. Nature Reviews Genetics, 8, 299-309. https://doi.org/10.1038/nrg2047.
Boonekamp, J. J., Mulder, G., Salomons, H. M., Dijkstra, C., & Verhulst, S. (2014). Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds. Proceedings of the Royal Society B: Biological Sciences, 281(1785), 20133287. https://doi.org/10.1098/rspb.2013.3287.
Boonekamp, J., Rodriguez-Munoz, R., Hopwood, P., Zuidersma, E., Mulder, E., Wilson, A., Tregenza, T. (2020). Telomere length is highly heritable and independent of growth rate manipulated by temperature in field crickets. bioRxiv, https://doi.org/10.1101/2020.05.29.123216.
Broer, L., Codd, V., Nyholt, D. R., Deelen, J., Mangino, M., Willemsen, G., & Boomsma, D. I. (2013). Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance, and a paternal age effect. European Journal of Human Genetics, 21(10), 1163-1168.
Buxton, J., Suderman, M., Pappas, J., Borghol, N., McArdle, W., Blakemore, C. H., Power, C., Szyf, M., & Pembrey, M. (2014). Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci. Scientific Reports, 4, 4954. https://doi.org/10.1038/srep04954.
Costanzo, A., Parolini, M., Bazzi, G., Khoriauli, L., Santagostino, M., Possenti, C. D., Romano, A., Nergadze, S. G., Rubolini, D., Giulotto, E., & Saino, N. (2016). Brood size, telomere length, and parent-offspring color signaling in barn swallows. Behavioral Ecology, 28, 204-211. https://doi.org/10.1093/beheco/arw147.
Criscuolo, F., Bize, P., Nasir, L., Metcalfe, N. B., Foote, C. G., Griffiths, K., Gault, E. A., & Monaghan, P. (2009). Real-time quantitative PCR assay for measurement of avian telomeres. Journal of Avian Biology, 40, 342-347. https://doi.org/10.1111/j.1600-048X.2008.04623.x.
de Lange, T. (2005). Shelterin: The protein complex that shapes and safeguards human telomeres. Genes and Development, 19, 2100-2110. https://doi.org/10.1101/gad.1346005.
Dong, Y., Huang, Y., Gutin, B., Raed, A., Dong, Y., & Zhu, H. (2017). Associations between global DNA methylation and telomere length in healthy adolescents. Scientific Reports, 7, 4210. https://doi.org/10.1038/s41598-017-04493-z.
Dugdale, H. L., & Richardson, D. S. (2018). Heritability of telomere variation: It is all about the environment! Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160450. https://doi.org/10.1098/rstb.2016.0450.
Eastwood, J. R., Hall, M. L., Teunissen, N., Kingma, S. A., Hidalgo Aranzamendi, N., Fan, M., & Peters, A. (2019). Early-life telomere length predicts lifespan and lifetime reproductive success in a wild bird. Molecular Ecology, 28(5), 1127-1137.
Farré, P., Jones, M. J., Meaney, M. J., Emberly, E., Turecki, G., & Kobor, M. S. (2015). Concordant and discordant DNA methylation signatures of aging in human blood and brain. Epigenetics, 8(1), 8-19.
Feil, R., & Fraga, M. E. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Review Genetics, 13, 97-109.
Fitzpatrick, L. J., Olsson, M., Parsley, L. M., Pauliny, A., Pinfold, T. L., Pirtle, T., While, G. M., & Wapstra, E. (2019). Temperature and telomeres: Thermal treatment influences telomere dynamics through a complex interplay of cellular processes in a cold-climate skink. Oecologia, 191, 767-776. https://doi.org/10.1007/s00442-019-04530-w.
Gilby, A. J., Mainwaring, M. C., & Griffith, S. C. (2013). Incubation behaviour and hatching synchrony differ in wild and captive populations of the zebra finch. Animal Behaviour, 85, 1329-1334. https://doi.org/10.1016/j.anbehav.2013.03.023.
Gonzalo, S., Jaco, I., Fraga, M. F., Chen, T., Li, E., Esteller, M., & Blasco, M. A. (2006). DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biology, 8, 416-424. https://doi.org/10.1038/ncb1386.
Green, P., & MacLeod, C. J. (2015). SIMR: An R package for power analysis of generalised linear mixed models by simulation. Methods in Ecology and Evolution, 7, 493-498. https://doi.org/10.1111/2041-210X.12504.
Griffith, S. C., Mainwaring, M. C., Sorato, E., & Beckmann, C. (2016). High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird. Royal Society Open Science, 3(150371), 1-14. https://doi.org/10.1098/rsos.150371.
Griffith, S. C., Pryke, S. R., & Mariette, M. (2008). Nest box use by the zebra finch Taeniopygia guttata: Implications for reproductive success and research. Emu, 108, 311-319.
Groleau, P., Joober, R., Israel, M., Zeramdini, N., DeGuzman, R., & Steiger, H. (2014). Methylation of the dopamine D2 receptor (DRD2) gene promoter in women with a bulimia-spectrum disorder: Associations with borderline personality disorder and exposure to childhood abuse. Journal of Psychiatric Research, 48(1), 121-127. https://doi.org/10.1016/j.jpsychires.2013.10.003.
Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274), 458-460. https://doi.org/10.1038/345458a0.
Hemann, M. T., Strong, M. A., Hao, L. Y., & Greider, C. W. (2001). The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell, 107(1), 67-77. https://doi.org/10.1016/S0092-8674(01)00504-9.
Hoelzl, F., Smith, S., Cornils, J. S., Aydinonat, D., Bieber, C., & Ruf, T. (2016). Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). Scientific Reports, 6, 36856. https://doi.org/10.1038/srep36856.
Hornsby, P. J. (2003). Replicative senescence of human and mouse cells in culture: Significance for aging research. Mechanisms of Ageing and Development, 124, 853-855. https://doi.org/10.1016/S0047-6374(03)00173-8.
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371-384. https://doi.org/10.1038/s41576-018-0004-3.
Husby, A. (2020). On the use of blood samples for measuring DNA methylation in ecological epigenetic studies. Integrative and Comparative Biology, 60(6), 1558-1566. https://doi.org/10.1093/icb/icaa123.
Jimeno, B., Hau, M., Gómez-Díaz, E., & Verhulst, S. (2019). Developmental conditions modulate DNA methylation at the glucocorticoid receptor gene with cascading effects on expression and corticosterone levels in zebra finches. Scientific Reports, 9, 15869. https://doi.org/10.1038/s41598-019-52203-8.
Jylhava, J., Pedersen, N. L., & Hagg, S. (2017). Biological age predictors. EBioMedicine, 21, 29-36. https://doi.org/10.1016/j.ebiom.2017.03.046.
Kotrschal, A., Ilmonen, P., & Penn, D. J. (2007). Stress impacts telomere dynamics. Biology Letters, 3, 128-130. https://doi.org/10.1098/rsbl.2006.0594.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26.
Lee, Y., Sun, D., Ori, A. P. S., Lu, A. T., Seeboth, A., Harris, S. E., Deary, I. J., Marioni, R. E., Soerensen, M., Mengel-From, J., Hjelmborg, J., Christensen, K., Wilson, J. G., Levy, D., Reiner, A. P., Chen, W., Li, S., Harris, J. R., Magnus, P., … Horvath, S. (2019). Epigenome-wide association study of leukocyte telomere length. Aging, 11(16), 5876-5894. https://doi.org/10.18632/aging.102230.
Lu, A. T., Seeboth, A., Tsai, P.-C., Sun, D., Quach, A., Reiner, A. P., Kooperberg, C., Ferrucci, L., Hou, L., Baccarelli, A. A., Li, Y., Harris, S. E., Corley, J., Taylor, A., Deary, I. J., Stewart, J. D., Whitsel, E. A., Assimes, T. L., Chen, W., … Horvath, S. (2019). DNA methylation-based estimator of telomere length. Aging, 11(16), 5895-5923. https://doi.org/10.18632/aging.102173.
Makinen, H., van Oers, K., Eeva, T., Laine, V. N., & Ruuskanen, S. (2020). The effect of experimental lead pollution on DNA methylation in a wild bird population. bioRxiv 851998. https://doi.org/10.1101/851998.
Manning, E. L., Crossland, J., Dewey, M. J., & Van Zant, G. (2002). Influences of inbreeding and genetics on telomere length in mice. Mammalian Genome, 13(5), 234-238. https://doi.org/10.1007/s003350020027.
Mariette, M. M., & Griffith, S. C. (2015). The adaptive significance of provisioning and foraging coordination between breeding partners. The American Naturalist, 185, 270-280. https://doi.org/10.1086/679441.
Masliah, E., Dumaop, W., Galasko, D., & Desplats, P. (2013). Distinctive patterns of DNA methylation associated with Parkinson disease: Identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics, 8(10), 1030-1038. https://doi.org/10.4161/epi.25865.
McLennan, D., Armstrong, J. D., Stewart, D. C., Mckelvey, S., Boner, W., Monaghan, P., & Metcalfe, N. B. (2018). Telomere elongation during early development is independent of environmental temperatures in Atlantic salmon. The Journal of Experimental Biology, 221(Pt 11), jeb178616. https://doi.org/10.1242/jeb.178616.
Monaghan, P. (2010). Telomeres and life histories: The long and the short of it. Annals of the New York Academy of Sciences, 1206, 130-142. https://doi.org/10.1111/j.1749-6632.2010.05705.x.
Monaghan, P. (2014). Organismal stress, telomeres and life histories. Journal of Experimental Biology, 217, 57-66. https://doi.org/10.1242/jeb.090043.
Monaghan, P., & Metcalfe, N. B. (2019). The deteriorating soma and the indispensable germline: gamete senescence and offspring fitness. Proceedings of Biological sciences, 286(1917), 20192187. https://doi.org/10.1098/rspb.2019.2187.
Monaghan, P., & Ozanne, S. E. (2018). Somatic growth and telomere dynamics in vertebrates: Relationships, mechanisms, and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160446. https://doi.org/10.1098/rstb.2016.0446.
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed effects models. Methods in Ecology and Evolution, 4, 133-142.
Nettle, D., Andrews, C., Reichert, S., Bedford, T., Gott, A., Parker, C., Kolenda, C., Martin-Ruiz, C., Monaghan, P., & Bateson, M. (2016). Brood size moderates’ associations between relative size, telomere length, and immune development in European starling nestlings. Ecology and Evolution, 6, 8138-8148. https://doi.org/10.1002/ece3.2551.
Noguera, J., Metcalfe, N., Reichert, S., & Monaghan, P. (2016). Embryonic and postnatal telomere length decrease with ovulation order within clutches. Scientific Reports, 6, 25915. https://doi.org/10.1038/srep25915.
Noguera, J. C., & Velando, A. (2020). Gull chicks grow faster but lose telomeres when prenatal cues mismatch the real presence of sibling competitors. Proceedings of the Royal Society B, Biological Sciences, 287(1927), 20200242. https://doi.org/10.1098/rspb.2020.0242.
Nussey, D. H., Baird, D., Barrett, E., Boner, W., Fairlie, J., Gemmell, N., Hartmann, N., Horn, T., Haussmann, M., Olsson, M., Turbill, C., Verhulst, S., Zahn, S., & Monaghan, P. (2014). Measuring telomere length and telomere dynamics in evolutionary biology and ecology. Methods in Ecology and Evolution, 5, 299-310. https://doi.org/10.1111/2041-210X.12161.
Olsson, M., Pauliny, A., Wapstra, E., Uller, T., Schwartz, T., & Blomqvist, D. (2011). Sex differences in sand lizard telomere inheritance: paternal epigenetic effects increase telomere heritability and offspring survival. PLoS One, 6, e17473. https://doi.org/10.1371/journal.pone.0017473.
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45.
Provençal, N., Suderman, M. J., Guillemin, C., Vitaro, F., Côté, S. M., Hallett, M., Tremblay, R. E., & Szyf, M. (2014). Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One, 9(4), e89839. https://doi.org/10.1371/journal.pone.0089839.
Puglia, M. H., Lillard, T. S., Morris, J. P., & Connelly, J. J. (2015). Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proceedings of the National Academy of Sciences, 112(11), 3308-3313.
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Reichert, S., Stier, A., Zahn, S., Arrive, M., Bize, P., Massemin, S., & Criscuolo, F. (2014). Increased brood size leads to persistent eroded telomeres. Frontiers in Ecology and Evolution, 2(9), 1-11. https://doi.org/10.3389/fevo.2014.00009.
Richards, C. L., Schrey, A. W., & Pigliucci, M. (2012). Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecology Letters, 15, 1016-1025.
Ringsby, T. H., Jensen, H., Pärn, H., Kvalnes, T., Boner, W., Gillespie, R., & Monaghan, P. (2015). On being the right size: Increased body size is associated with reduced telomere length under natural conditions. Proceedings of the Royal Society B: Biological Sciences, 282(1820), 20152331. https://doi.org/10.1098/rspb.2015.2331.
Salmon, A., Clotault, J., Jenczewski, E., Chable, V., & Manzanares-Dauleux, M. (2008). Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Science, 174(1), 61-70. https://doi.org/10.1016/j.plantsci.2007.09.012.
Salomons, H. M., Mulder, E., van de Zande, L., Haussmann, M. F., Linskens, M., & Verhulst, S. (2009). Telomere shortening and survival in free-living corvids. Proceedings of the Royal Society B, Biological Sciences, 276, 3157-3165. https://doi.org/10.1098/rspb.2009.0517.
Schrey, A. W., Alvarez, M., Foust, C. M., Kilvitis, H. J., Lee, J. D., Liebl, A. L., Martin, L. B., Richards, C. L., & Robertson, M. (2013). Ecological epigenetics: BEYOND MS-AFLP. Integrative and Comparative Biology, 53(2), 340-350. https://doi.org/10.1093/icb/ict012.
Schultz, M. D., He, Y., Whitaker, J. W., Hariharan, M., Mukamel, E. A., Leung, D., Rajagopal, N., Nery, J. R., Urich, M. A., Chen, H., Lin, S., Lin, Y., Jung, I., Schmitt, A. D., Selvaraj, S., Ren, B., Sejnowski, T. J., Wang, W., & Ecker, J. R. (2015). Human body epigenome maps reveal noncanonical DNA methylation variation. Nature, 523(7559), 212-216. https://doi.org/10.1038/nature14465.
Sheldon, E. L., Schrey, A. W., Hurley, L. L., & Griffith, S. C. (2020). Dynamic changes in DNA methylation during postnatal development in zebra finches (Taeniopygia guttata) exposed to different temperatures. Journal of Avian Biology, 51(5), 1-9. https://doi.org/10.1111/jav.02294.
Sheldon, E. L., Schrey, A. W., Ragsdale, A., & Griffith, S. C. (2018). Brood size influences patterns of DNA methylation in wild Zebra Finches (Taeniopygia guttata). The Auk, 135(4), 1113-1122.
Siller, S. J., & Rubenstein, D. R. (2019). A tissue comparison of DNA methylation of the glucocorticoid receptor gene (Nr3c1) in European starlings. Integrative and Comparative Biology, 59(2), 264-272. https://doi.org/10.1093/icb/icz034.
Steenstrup, T., Hjelmborg, J. V. B., Kark, J. D., Christensen, K., & Aviv, A. (2013). The telomere lengthening conundrum-artifact or biology? Nucleic acids research, 41(13), e131-e131.
Stier, A., Metcalfe, N. B., & Monaghan, P. (2020). Pace and stability of embryonic development affect telomere dynamics: An experimental study in a precocial bird model. Proceedings of the Royal Society B, 287(1933), 1-9. https://doi.org/10.1098/rspb.2020.1378.
Tricola, G. M., Simons, M. J., Atema, E., Boughton, R. K., Brown, J. L., Dearborn, D., Haussmann, M. (2018). The rate of telomere loss is related to maximum lifespan in birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160445. https://doi.org/10.1098/rstb.2016.0445.
Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A. et al (2011). Stress-related methylation of the catechol-methyltransferase allele predicts human prefrontal cognition and activity. The Journal of Neuroscience, 31(18), 6692.
Van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and allocation of resources: Their influence on variation in life history tactics. The American Naturalist, 128, 137-142. https://doi.org/10.1086/284547.
Vedder, O., Verhulst, S., Zuidersma, E., & Bouwhuis, S. (2018). Embryonic growth rate affects telomere attrition: An experiment in a wild bird. The Journal of Experimental Biology, 221, 1-4. https://doi.org/10.1242/jeb.181586.
Verdun, R. E., & Karlseder, J. (2007). Replication and protection of telomeres. Nature, 447(7147), 924-931.
Verhulst, S., Aviv, A., Benetos, A., Berenson, G. S., & Kark, J. D. (2013). Do leukocyte telomere length dynamics depend on baseline telomere length? An analysis that corrects for ‘regression to the mean’. European Journal of Epidemiology, 28, 859-866. https://doi.org/10.1007/s10654-013-9845-4.
Victorelli, S., & Passos, J. F. (2017). Telomeres and cell senescence - Size matters not. EBioMedicine, 21, 14-20. https://doi.org/10.1016/j.ebiom.2017.03.027.
Voillemot, M., Hine, K., Zahn, S., Criscuolo, F., Gustafsson, L., Doligez, B., & Bize, P. (2012). Effects of brood size manipulation and common origin on phenotype and telomere length in nestling collared flycatchers. BMC Ecology, 12, 1-8. https://doi.org/10.1186/1472-6785-12-17.
Watson, H., Bolton, M., & Monaghan, P. (2015). Variation in early-life telomere dynamics in a long-lived bird: Links to environmental conditions and survival. The Journal of Experimental Biology, 218(5), 668-674. https://doi.org/10.1242/jeb.104265.
Watson, H., Salmón, P., & Isaksson, C. (2019). Dynamic changes in DNA methylation during embryonic and postnatal development of an altricial wild bird. Ecology and Evolution, 9(17), 9580-9585. https://doi.org/10.1002/ece3.5480.
Wilbourn, R. V., Moatt, J. P., Froy, H., Walling, C. A., Nussey, D. H., & Boonekamp, J. J. (2018). The relationship between telomere length and mortality risk in non-model vertebrate systems: A meta-analysis. Phiolosophical Transactions Royal Society B, 373, 20160447. https://doi.org/10.1098/rstb.2016.0447.
Wong, K. K., Maser, R. S., Bachoo, R. M., Menon, J., Carrasco, D. R., Gu, Y., & DePinho, R. A. (2003). Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature, 421(6923), 643-648.
Wood, E. M., & Young, A. J. (2019). Telomere attrition predicts reduced survival in a wild social bird, but short telomeres do not. Molecular Ecology, 28(16), 3669-3680.
Yan, X., Liu, H., Liu, J., Zhang, R., Wang, G., & Wang, J. (2015). Evidence in duck for supporting alteration of incubation temperature may have influence on methylation of genomic DNA. Poultry Science, 94(10), 2537-2545. https://doi.org/10.3382/ps/pev201.
Young, R. C., Welcker, J., Barger, C. P., Hatch, S. A., Merkling, T., Kitaiskaia, E. V., Haussmann, M. F., & Kitaysky, A. S. (2017). Effects of developmental conditions on growth, stress and telomeres in black-legged kittiwake chicks. Molecular Ecology, 26(13), 3572-3584. https://doi.org/10.1111/mec.14121.
فهرسة مساهمة: Keywords: Aves; ageing; biomarkers; development; life history; temperature effects
تواريخ الأحداث: Date Created: 20210922 Date Completed: 20230130 Latest Revision: 20230209
رمز التحديث: 20231215
DOI: 10.1111/mec.16187
PMID: 34551154
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.16187