دورية أكاديمية

FrogCap: A modular sequence capture probe-set for phylogenomics and population genetics for all frogs, assessed across multiple phylogenetic scales.

التفاصيل البيبلوغرافية
العنوان: FrogCap: A modular sequence capture probe-set for phylogenomics and population genetics for all frogs, assessed across multiple phylogenetic scales.
المؤلفون: Hutter CR; Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA., Cobb KA; Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA., Portik DM; California Academy of Sciences, San Francisco, California, USA., Travers SL; Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA.; Department of Biological Sciences, Rutgers University-Newark, Newark, New Jersey, USA., Wood PL Jr; Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA., Brown RM; Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA.
المصدر: Molecular ecology resources [Mol Ecol Resour] 2022 Apr; Vol. 22 (3), pp. 1100-1119. Date of Electronic Publication: 2021 Oct 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 101465604 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-0998 (Electronic) Linking ISSN: 1755098X NLM ISO Abbreviation: Mol Ecol Resour Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, England : Blackwell
مواضيع طبية MeSH: Anura*/genetics , Genetics, Population*, Animals ; Genome ; Genomics ; Phylogeny
مستخلص: Despite the prevalence of high-throughput sequencing in phylogenetics, many relationships remain difficult to resolve because of conflicting signal among genomic regions. Selection of different types of molecular markers from different genomic regions is required to overcome these challenges. For evolutionary studies in frogs, we introduce the publicly available FrogCap suite of genomic resources, which is a large collection of ~15,000 markers that unifies previous genetic sequencing efforts. FrogCap is designed to be modular, such that subsets of markers and SNPs can be selected based on the desired phylogenetic scale. FrogCap uses a variety of marker types that include exons and introns, ultraconserved elements, and previously sequenced Sanger markers, which span up to 10,000 bp in alignment lengths; in addition, we demonstrate potential for SNP-based analyses. We tested FrogCap using 121 samples distributed across five phylogenetic scales, comparing probes designed using a consensus- or exemplar genome-based approach. Using the consensus design is more resilient to issues with sensitivity, specificity, and missing data than picking an exemplar genome sequence. We also tested the impact of different bait kit sizes (20,020 vs. 40,040) on depth of coverage and found triple the depth for the 20,020 bait  kit. We observed sequence capture success (i.e., missing data, sequenced markers/bases, marker length, and informative sites) across phylogenetic scales. The incorporation of different marker types is effective for deep phylogenetic relationships and shallow population genetics studies. Having demonstrated FrogCap's utility and modularity, we conclude that these new resources are efficacious for high-throughput sequencing projects across variable timescales.
(© 2021 John Wiley & Sons Ltd.)
References: Alexander, A. M., Su, Y.-C., Oliveros, C. H., Olson, K. V., Travers, S. L., & Brown, R. M. (2016). Genomic data reveals potential for hybridization, introgression, and incomplete lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow-mouth frogs. Evolution, 71(2), 475-488. https://doi.org/10.1111/evo.13133.
Alexander, R. P., Fang, G., Rozowsky, J., Snyder, M., & Gerstein, M. B. (2010). Annotating non-coding regions of the genome. Nature Reviews Genetics, 11(8), 559-571. https://doi.org/10.1038/nrg2814.
AmphibiaWeb (2021). Information on amphibian biology and conservation. Retrieved April 8, 2021, from http://www.amphibiaweb.org.
Andermann, T., Fernandes, A. M., Olsson, U., Töpel, M., Pfeil, B., Oxelman, B., Aleixo, A., Faircloth, B. C., & Antonelli, A. (2019). Allele phasing greatly improves the phylogenetic utility of ultraconserved elements. Systematic Biology, 68(1), 32-46. https://doi.org/10.1093/sysbio/syy039.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021.
Barrientos, L. S., Streicher, J. W., Miller, E. C., Pie, M. R., Wiens, J. J., & Crawford, A. J. (2021). Phylogeny of terraranan frogs based on 2,665 loci and impacts of missing data on phylogenomic analyses. Systematics and Biodiversity, 1-16. https://doi.org/10.1080/14772000.2021.1933249.
Beaudry, M. S., Wang, J., Kieran, T. J., Thomas, J., Bayona-Vásquez, N. J., Gao, B., Devault, A., Brunelle, B., Lu, K., Wang, J.-S., Rhodes, O. E., & Glenn, T. C. (2021). Improved microbial community characterization of 16S rRNA via metagenome hybridization capture enrichment. Frontiers in Microbiology, 12, 644662. https://doi.org/10.3389/fmicb.2021.644662.
Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., & Haussler, D. (2004). Ultraconserved elements in the human genome. Science, 304(5675), 1321-1325. https://doi.org/10.1126/science.1098119.
Bi, K., Vanderpool, D., Singhal, S., Linderoth, T., Moritz, C., & Good, J. M. (2012). Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics, 13(1), 403. https://doi.org/10.1186/1471-2164-13-403.
Blom, M. P. K., Bragg, J. G., Potter, S., & Moritz, C. (2017). Accounting for uncertainty in gene tree estimation: Summary-coalescent species tree inference in a challenging radiation of Australian lizards. Systematic Biology, 66(3), 352-366. https://doi.org/10.1093/sysbio/syw089.
Bragg, J. G., Potter, S., Bi, K., & Moritz, C. (2016). Exon capture phylogenomics: Efficacy across scales of divergence. Molecular Ecology Resources, 16(5), 1059-1068. https://doi.org/10.1111/1755-0998.12449.
Brandley, M. C., Bragg, J. G., Singhal, S., Chapple, D. G., Jennings, C. K., Lemmon, A. R., Lemmon, E. M., Thompson, M. B., & Moritz, C. (2015). Evaluating the performance of anchored hybrid enrichment at the tips of the tree of life: A phylogenetic analysis of Australian Eugongylus group scincid lizards. BMC Evolutionary Biology, 15(62), 1-14. https://doi.org/10.1186/s12862-015-0318-0.
Brown, R. M., Siler, C. D., Richards, S. J., Diesmos, A. C., & Cannatella, D. C. (2015). Multilocus phylogeny and a new classification for Southeast Asian and Melanesian forest frogs (family Ceratobatrachidae). Zoological Journal of the Linnean Society, 174(1), 130-168. https://doi.org/10.1111/zoj.12232.
Bushnell, B., Rood, J., & Singer, E. (2017). BBMerge - Accurate paired shotgun read merging via overlap. PLoS One, 12(10), e0185056-e185115. https://doi.org/10.1371/journal.pone.0185056.
Capella-Gutierrez, S., Silla-Martinez, J. M., & Gabaldon, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972-1973. https://doi.org/10.1093/bioinformatics/btp348.
Castoe, T. A., de Koning, A. P. J., Kim, H.-M., Gu, W., Noonan, B. P., Naylor, G., Jiang, Z. J., Parkinson, C. L., & Pollock, D. D. (2009). Evidence for an ancient adaptive episode of convergent molecular evolution. Proceedings of the National Academy of Sciences, 106(22), 8986-8991. https://doi.org/10.1073/pnas.0900233106.
Chakrabarty, P., Faircloth, B. C., Alda, F., Ludt, W. B., Mcmahan, C. D., Near, T. J., Dornburg, A., Albert, J. S., Arroyave, J., Stiassny, M. L. J., Sorenson, L., & Alfaro, M. E. (2017). Phylogenomic systematics of ostariophysan fishes: Ultraconserved elements support the surprising non-monophyly of Characiformes. Systematic Biology, 66(6), 881-895. https://doi.org/10.1093/sysbio/syx038.
Chan, K. O., Hutter, C. R., Wood, P. L., Grismer, L. L., & Brown, R. M. (2020a). Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana). Molecular Phylogenetics and Evolution, 151, 106899. https://doi.org/10.1016/j.ympev.2020.106899.
Chan, K. O., Hutter, C. R., Wood, P. L., Grismer, L. L., & Brown, R. M. (2020c). Target-capture phylogenomics provide insights on gene and species tree discordances in Old World treefrogs (Anura: Rhacophoridae). Proceedings of the Royal Society B: Biological Sciences, 287(1940), 20202102. https://doi.org/10.1098/rspb.2020.2102.
Chan, K. O., Hutter, C. R., Wood, P. L., Grismer, L. L., Das, I., & Brown, R. M. (2020). Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Molecular Ecology, 29(20), 3970-3987. https://doi.org/10.1111/mec.15603.
Chan, K. O., Hutter, C. R., Wood, P. L. Jr, Su, Y.-C., & Brown, R. M. (2021). Gene flow increases phylogenetic structure and inflates cryptic species estimations: a case study on widespread Philippine puddle frogs (Occidozyga laevis). Systematic Biology, early view, syab034. https://doi.org/10.1093/sysbio/syab034.
Chang, Z., Li, G., Liu, J., Zhang, Y. U., Ashby, C., Liu, D., Cramer, C. L., & Huang, X. (2015). Bridger: A new framework for de novo transcriptome assembly using RNA-seq data. Genome Biology, 16(1), 30. https://doi.org/10.1186/s13059-015-0596-2.
Charif, D., & Lobry, J. R. (2007). SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. Structural Approaches to Sequence Evolution, 3, 207-232. Berlin: Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35306-5_10.
Chen, S., Huang, T., Zhou, Y., Han, Y., Xu, M., & Gu, J. (2017). AfterQC: Automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinformatics, 18(1), 80. https://doi.org/10.1186/s12859-017-1469-3.
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. bioRxiv, 1-12. https://doi.org/10.1101/274100.
Choi, M., Scholl, U. I., Ji, W., Liu, T., Tikhonova, I. R., Zumbo, P., Nayir, A., Bakkaloğlu, A., Özen, S., Sanjad, S., Nelson-Williams, C., Farhi, A., Mane, S., & Lifton, R. P. (2009). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19096-19101. https://doi.org/10.1073/pnas.0910672106.
Crawford, N. G., Faircloth, B. C., McCormack, J. E., Brumfield, R. T., Winker, K., & Glenn, T. C. (2012). More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology Letters, 8(5), 783-786. https://doi.org/10.1098/rsbl.2012.0331.
Dool, S. E., Puechmaille, S. J., Foley, N. M., Allegrini, B., Bastian, A., Mutumi, G. L., Maluleke, T. G., Odendaal, L. J., Teeling, E. C., & Jacobs, D. S. (2016). Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera). Molecular Phylogenetics and Evolution, 97, 196-212. https://doi.org/10.1016/j.ympev.2016.01.003.
Edwards, S. V. (2009). Natural selection and phylogenetic analysis. Proceedings of the National Academy of Sciences, 106(22), 8799-8800. https://doi.org/10.1073/pnas.0904103106.
Edwards, S. V., Potter, S., Schmitt, C. J., Bragg, J. G., & Moritz, C. (2016). Reticulation, divergence, and the phylogeography-phylogenetics continuum. Proceedings of the National Academy of Sciences, 113(29), 8025-8032. https://doi.org/10.1073/pnas.1601066113.
Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., & Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology, 61(5), 717-726. https://doi.org/10.1093/sysbio/sys004.
Feng, Y. J., Blackburn, D. C., Liang, D., Hillis, D. M., Wake, D. B., Cannatella, D. C., & Zhang, P. (2017). Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences, 114(29), E5864-E5870. https://doi.org/10.1073/pnas.1704632114.
Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F., De sá, R. O., Channing, A., Wilkinson, M., Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L., Moler, P., Drewes, R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M., & Wheeler, W. C. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 8-370.
Glaw, F., & Vences, M. (2006). Phylogeny and genus-level classification of mantellid frogs (Amphibia, Anura). Organisms Diversity & Evolution, 6(3), 236-253. https://doi.org/10.1016/j.ode.2005.12.001.
Glenn, T. C. (2011). Field guide to next-generation DNA sequencers. Molecular Ecology Resources, 11(5), 759-769. https://doi.org/10.1111/j.1755-0998.2011.03024.x.
Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E. M., Brockman, W., Fennell, T., Giannoukos, G., Fisher, S., Russ, C., Gabriel, S., Jaffe, D. B., Lander, E. S., & Nusbaum, C. (2009). Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology, 27(2), 182-189. https://doi.org/10.1038/nbt.1523.
Graybeal, A. (1994). Evaluating the phylogenetic utility of genes: A search for genes informative about deep divergences among vertebrates. Systematic Biology, 43(2), 174-193. https://doi.org/10.1093/sysbio/43.2.174.
Guillory, W. X., French, C. M., Twomey, E. M., Chávez, G., Prates, I., von May, R., De la Riva, I., Lötters, S., Reichle, S., Serrano-Rojas, S. J., Whitworth, A., & Brown, J. L. (2020). Phylogenetic relationships and systematics of the Amazonian poison frog genus Ameerega using ultraconserved genomic elements. Molecular Phylogenetics and Evolution, 142, 106638. https://doi.org/10.1016/j.ympev.2019.106638.
Guillory, W. X., Muell, M. R., Summers, K., & Brown, J. L. (2019). Phylogenomic reconstruction of the Neotropical poison frogs (Dendrobatidae) and their conservation. Diversity, 11(126), 1-14. https://doi.org/10.3390/d11080126.
Guo, Y., Long, J., He, J., Li, C.-I., Cai, Q., Shu, X.-O., Zheng, W., & Li, C. (2012). Exome sequencing generates high quality data in non-target regions. BMC Genomics, 13(1), 194. https://doi.org/10.1186/1471-2164-13-194.
Halligan, D. L., Eyre-Walker, A., Andolfatto, P., & Keightley, P. D. (2004). Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila. Genome Research, 14(2), 273-279. https://doi.org/10.1101/gr.1329204.
Han, K.-L., Braun, E. L., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, M. J., Chojnowski, J. L., Hackett, S. J., Harshman, J., Huddleston, C. J., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C., & Yuri, T. (2011). Are transposable element insertions homoplasy free?: An examination using the avian tree of life. Systematic Biology, 60(3), 375-386. https://doi.org/10.1093/sysbio/syq100.
Hancock-Hanser, B. L., Frey, A., Leslie, M. S., Dutton, P. H., Archer, F. I., & Morin, P. A. (2013). Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics. Molecular Ecology Resources, 13, 254-268. https://doi.org/10.1111/1755-0998.12059.
Hedge, J., & Wilson, D. J. (2014). Bacterial phylogenetic reconstruction from whole genomes is robust to recombination but demographic inference is not. MBio, 5(6), e02158-14. https://doi.org/10.1128/mBio.02158-14.
Hedtke, S. M., Morgan, M. J., Cannatella, D. C., & Hillis, D. M. (2013). Targeted enrichment: Maximizing orthologous gene comparisons across deep evolutionary time. PLoS One, 8(7), e67908. https://doi.org/10.1371/journal.pone.0067908.
Heinicke, M. P., Lemmon, A. R., Lemmon, E. M., McGrath, K., & Hedges, S. B. (2018). Phylogenomic support for evolutionary relationships of New World direct-developing frogs (Anura: Terraranae). Molecular Phylogenetics and Evolution, 118, 145-155. https://doi.org/10.1016/j.ympev.2017.09.021.
Hellsten, U., Harland, R. M., Gilchrist, M. J., Hendrix, D., Jurka, J., Kapitonov, V., Ovcharenko, I., Putnam, N. H., Shu, S., Taher, L., Blitz, I. L., Blumberg, B., Dichmann, D. S., Dubchak, I., Amaya, E., Detter, J. C., Fletcher, R., Gerhard, D. S., Goodstein, D., … Rokhsar, D. S. (2010). The genome of the western clawed frog Xenopus tropicalis. Science, 328(5978), 633-636. https://doi.org/10.1126/science.1183670.
Hime, P. M., Lemmon, A. R., Lemmon, E. C. M., Prendini, E., Brown, J. M., Thomson, R. C., Kratovil, J. D., Noonan, B. P., Pyron, R. A., Peloso, P. L. V., Kortyna, M. L., Keogh, J. S., Donnellan, S. C., Mueller, R. L., Raxworthy, C. J., Kunte, K., Ron, S. R., Das, S., Gaitonde, N., … Weisrock, D. W. (2021). Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Systematic Biology, 70, 49-66. https://doi.org/10.1093/sysbio/syaa034.
Hosner, P. A., Braun, E. L., & Kimball, R. T. (2016). Rapid and recent diversification of curassows, guans, and chachalacas (Galliformes: Cracidae) out of Mesoamerica: Phylogeny inferred from mitochondrial, intron, and ultraconserved element sequences. Molecular Phylogenetics and Evolution, 102, 320-330. https://doi.org/10.1016/j.ympev.2016.06.006.
Hugall, A. F., O'Hara, T. D., Hunjan, S., Nilsen, R., & Moussalli, A. (2016). An exon-capture system for the entire class Ophiuroidea. Molecular Biology and Evolution, 33, 281-294. https://doi.org/10.1093/molbev/msv216.
Hutter, C. R. (2021). FrogCap: a modular sequence capture probe set for phylogenomics and population genetics for all frogs, assessed across multiple phylogenetic scales. Retrieved from osf.io/gvbr5.
Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y. W., Faircloth, B. C., Nabholz, B., Howard, J. T., Suh, A., Weber, C. C., da Fonseca, R. R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., … Zhang, G. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346(6215), 1320-1331. https://doi.org/10.1126/science.1253451.
Jones, M. R., & Good, J. M. (2016). Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 25, 185-202. https://doi.org/10.1111/mec.13304.
Karin, B. R., Gamble, T., & Jackman, T. R. (2020). Optimizing phylogenomics with rapidly evolving long exons: Comparison with anchored hybrid enrichment and ultraconserved elements. Molecular Biology and Evolution, 37(3), 904-922. https://doi.org/10.1093/molbev/msz263.
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010.
Katzman, S., Kern, A. D., Bejerano, G., Fewell, G., Fulton, L., Wilson, R. K., Salama, S. R., & Haussler, D. (2007). Human genome ultraconserved elements are ultraselected. Science, 317(5840), 915. https://doi.org/10.1126/science.1142430.
Kent, W. J. (2002). BLAT-the BLAST-like alignment tool. Genome Research, 12(4), 656-664. https://doi.org/10.1101/gr.229202.
Kircher, M., & Kelso, J. (2010). High-throughput DNA sequencing - concepts and limitations. BioEssays, 32, 524-536. https://doi.org/10.1002/bies.200900181.
Lanier, H. C., & Knowles, L. L. (2012). Is recombination a problem for species-tree analyses? Systematic Biology, 61(4), 691-701. https://doi.org/10.1093/sysbio/syr128.
Laurence, M., Hatzis, C., & Brash, D. E. (2014). Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS One, 9(5), e97876-e97878. https://doi.org/10.1371/journal.pone.0097876.
Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M. T., & Carey, V. J. (2013). Software for computing and annotating genomic ranges. PLOS Computational Biology, 9(8), e1003118. https://doi.org/10.1371/journal.pcbi.1003118.
Leaché, A. D., & Oaks, J. R. (2017). The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 48, 69-84. https://doi.org/10.1146/annurev-ecolsys-110316-022645.
Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology, 61(5), 727-744. https://doi.org/10.1093/sysbio/sys049.
Lemmon, E. M., & Lemmon, A. R. (2013). High-throughput genomic data in systematics and phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 44, 99-121. https://doi.org/10.1146/annurev-ecolsys-110512-135822.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352.
Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658-1659. https://doi.org/10.1093/bioinformatics/btl158.
Li, Y.-L., Weng, J.-C., Hsiao, C.-C., Chou, M.-T., Tseng, C.-W., & Hung, J.-H. (2015). PEAT: An intelligent and efficient paired-end sequencing adapter trimming algorithm. BMC Bioinformatics, 16(1), S2. https://doi.org/10.1186/1471-2105-16-S1-S2.
Liu, L., Yu, L., Pearl, D. K., & Edwards, S. V. (2009). Estimating species phylogenies using coalescence times among sequences. Systematic Biology, 58(5), 468-477. https://doi.org/10.1093/sysbio/syp031.
Maddison, W. P. (1997). Gene trees in species trees. Systematic Biology, 46(3), 523-536. https://doi.org/10.1093/sysbio/46.3.523.
McCartney-Melstad, E., Mount, G. G., & Shaffer, H. B. (2016). Exon capture optimization in amphibians with large genomes. Molecular Ecology Resources, 16, 1084-1094. https://doi.org/10.1111/1755-0998.12538.
McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2013). Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution, 66, 526-538. https://doi.org/10.1016/j.ympev.2011.12.007.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297-1303. https://doi.org/10.1101/gr.107524.110.
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17, 240-248. https://doi.org/10.1101/gr.5681207.
Mirarab, S., Bayzid, M. S., Boussau, B., & Warnow, T. (2014). Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science, 346(6215), 1250463. https://doi.org/10.1126/science.1250463.
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. https://doi.org/10.1038/nmeth.1226.
Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528. https://doi.org/10.1093/bioinformatics/bty633.
Peloso, P. L. V., Frost, D. R., Richards, S. J., Rodrigues, M. T., Donnellan, S., Matsui, M., Raxworthy, C. J., Biju, S. D., Lemmon, E. M., Lemmon, A. R., & Wheeler, W. C. (2016). The impact of anchored phylogenomics and taxon sampling on phylogenetic inference in narrow-mouthed frogs (Anura, Microhylidae). Cladistics, 32(2), 113-140. https://doi.org/10.1111/cla.12118.
Pie, M. R., Faircloth, B. C., Ribeiro, L. F., Bornschein, M. R., & McCormack, J. E. (2018). Phylogenomics of montane frogs of the Brazilian Atlantic Forest is consistent with isolation in sky islands followed by climatic stability. Biological Journal of the Linnean Society, 125(1), 72-82. https://doi.org/10.1093/biolinnean/bly093.
Portik, D. M., Smith, L. L., & Bi, K. (2016). An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura). Molecular Ecology Resources, 16(5), 1069-1083. https://doi.org/10.1111/1755-0998.12541.
Portik, D. M., & Wiens, J. J. (2021). Do alignment and trimming methods matter for phylogenomic (UCE) analyses? Systematic Biology, 70(3), 440-462. https://doi.org/10.1093/sysbio/syaa064.
Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., & Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526(7574), 569-573. https://doi.org/10.1038/nature15697.
Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543-583. https://doi.org/10.1016/j.ympev.2011.06.012.
Rasolonjatovo, S. M., Scherz, M. D., Hutter, C. R., Glaw, F., Rakotoarison, A., Razafindraibe, J. H., Goodman, S. M., Raselimanana, A. P., & Vences, M. (2020). Sympatric lineages in the Mantidactylus ambreensis complex of Malagasy frogs originated allopatrically rather than by in-situ speciation. Molecular Phylogenetics and Evolution, 144, 106700. https://doi.org/10.1016/j.ympev.2019.106700.
Reddy, S., Kimball, R. T., Pandey, A., Hosner, P. A., Braun, M. J., Hackett, S. J., Han, K.-L., Harshman, J., Huddleston, C. J., Kingston, S., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Witt, C. C., Yuri, T., & Braun, E. L. (2017). Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Systematic Biology, 66(5), 857-879. https://doi.org/10.1093/sysbio/syx041.
Reilly, S. B., Stubbs, A. L., Karin, B. R., Bi, K., Arida, E., Iskandar, D. T., & McGuire, J. A. (2019). Leap-frog dispersal and mitochondrial introgression: Phylogenomics and biogeography of Limnonectes fanged frogs in the Lesser Sundas Archipelago of Wallacea. Journal of Biogeography, 46(4), 757-769. https://doi.org/10.1111/jbi.13526.
Richards, E. J., Brown, J. M., Barley, A. J., Chong, R. A., & Thomson, R. C. (2018). Variation across mitochondrial gene trees provides evidence for systematic error: How much gene tree variation is biological? Systematic Biology, 67(5), 847-860. https://doi.org/10.1093/sysbio/syy013.
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4(17), e2584-e2622. https://doi.org/10.7717/peerj.2584.
Rohland, N., & Reich, D. (2012). Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Research, 22(5), 939-946. https://doi.org/10.1101/gr.128124.111.
Safonova, Y., Bankevich, A., & Pevzner, P. A. (2015). dipSPAdes: Assembler for highly polymorphic diploid genomes. Journal of Computational Biology, 22(6), 528-545. https://doi.org/10.1089/cmb.2014.0153.
Simmons, M. P., & Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology, 49(2), 369-381. https://doi.org/10.1093/sysbio/49.2.369.
Singhal, S., Grundler, M., Colli, G., & Rabosky, D. L. (2017). Squamate Conserved Loci (SqCL): A unified set of conserved loci for phylogenomics and population genetics of squamate reptiles. Molecular Ecology Resources, 17(6), e12-e24. https://doi.org/10.1111/1755-0998.12681.
Smith, B. T., Harvey, M. G., Faircloth, B. C., Glenn, T. C., & Brumfield, R. T. (2014). Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales. Systematic Biology, 63(1), 83-95. https://doi.org/10.1093/sysbio/syt061.
Springer, M. S., & Gatesy, J. (2018). Delimiting coalescence genes (C-Genes) in phylogenomic data sets. Genes, 9(123), 1-19. https://doi.org/10.3390/genes9030123.
Stephen, S., Pheasant, M., Makunin, I. V., & Mattick, J. S. (2008). Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular Clock. Molecular Biology and Evolution, 25(2), 402-408. https://doi.org/10.1093/molbev/msm268.
Streicher, J. W., Loader, S. P., Varela-Jaramillo, A., Montoya, P., & de Sá, R. O. (2020). Analysis of ultraconserved elements supports African origins of narrow-mouthed frogs. Molecular Phylogenetics and Evolution, 146, 106771. https://doi.org/10.1016/j.ympev.2020.106771.
Streicher, J. W., Miller, E. C., Guerrero, P. C., Correa, C., Ortiz, J. C., Crawford, A. J., Pie, M. R., & Wiens, J. J. (2018). Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci. Molecular Phylogenetics and Evolution, 119, 128-143. https://doi.org/10.1016/j.ympev.2017.10.013.
Sulonen, A.-M., Ellonen, P., Almusa, H., Lepistö, M., Eldfors, S., Hannula, S., Miettinen, T., Tyynismaa, H., Salo, P., Heckman, C., Joensuu, H., Raivio, T., Suomalainen, A., & Saarela, J. (2011). Comparison of solution-based exome capture methods for next generation sequencing. Genome Biology, 12(9), R94. https://doi.org/10.1186/gb-2011-12-9-r94.
Sun, Y.-B., Xiong, Z.-J., Xiang, X.-Y., Liu, S.-P., Zhou, W.-W., Tu, X.-L., & Zhang, Y. (2015). Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proceedings of the National Academy of Sciences, 112(11), E1257-E1262. https://doi.org/10.1073/pnas.1501764112.
Taylor, D. J., & Piel, W. H. (2004). An assessment of accuracy, error, and conflict with support values from genome-scale phylogenetic data. Molecular Biology and Evolution, 21(8), 1534-1537. https://doi.org/10.1093/molbev/msh156.
Tewhey, R., Nakano, M., Wang, X., Pabón-Peña, C., Novak, B., Giuffre, A., Lin, E., Happe, S., Roberts, D. N., LeProust, E. M., Topol, E. J., Harismendy, O., & Frazer, K. A. (2009). Enrichment of sequencing targets from the human genome by solution hybridization. Genome Biology, 10(10), R116. https://doi.org/10.1186/gb-2009-10-10-r116.
Townsend, J. (2007). Profiling phylogenetic informativeness. The Auk, 56(2), 222-231. https://doi.org/10.1080/10635150701311362.
Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K. V., Altshuler, D., Gabriel, S., & DePristo, M. A. (2013). From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 11(1100), 11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43.
Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57-63. https://doi.org/10.1038/nrg2484.
Xi, Z., Liu, L., & Davis, C. C. (2015). Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased. Molecular Phylogenetics and Evolution, 92, 63-71. https://doi.org/10.1016/j.ympev.2015.06.009.
Yuan, Z.-Y., Zhang, B.-L., Raxworthy, C. J., Weisrock, D. W., Hime, P. M., Jin, J.-Q., Lemmon, E. M., Lemmon, A. R., Holland, S. D., Kortyna, M. L., Zhou, W.-W., Peng, M.-S., Che, J., & Prendini, E. (2019). Natatanuran frogs used the Indian Plate to step-stone disperse and radiate across the Indian Ocean. National Science Review, 6(1), 10-14. https://doi.org/10.1093/nsr/nwy092.
Zarza, E., Faircloth, B. C., Tsai, W. L. E., Bryson, R. W. Jr, Klicka, J., & McCormack, J. E. (2016). Hidden histories of gene flow in highland birds revealed with genomic markers. Molecular Ecology, 25(20), 5144-5157. https://doi.org/10.1111/mec.13813.
معلومات مُعتمدة: 0907996 National Science Foundation; 1540502 National Science Foundation; 1654388 National Science Foundation; 1451148 National Science Foundation; 1557053 National Science Foundation; K12GM093854 Foundation for the National Institutes of Health; 0743491 National Science Foundation; 1701952 National Science Foundation; 2300207 KU Research Investment Council
فهرسة مساهمة: Keywords: UCEs; amphibians; anura; exon capture; genomics; target capture
تواريخ الأحداث: Date Created: 20210927 Date Completed: 20220308 Latest Revision: 20240628
رمز التحديث: 20240628
DOI: 10.1111/1755-0998.13517
PMID: 34569723
قاعدة البيانات: MEDLINE
الوصف
تدمد:1755-0998
DOI:10.1111/1755-0998.13517